Sliding Window

Key terms:

e Fixed Size Subarray

e Maximum/Minimum Subarray

e Consecutive/Continuous Elements
e Longest/Shortest Substring

e Optimal Window

e Substring/Window/Range

e Frequency Count

e Non-overlapping/Subsequence

e Sum/Product/Average in a Window
e Smallest/Largest Window

e Continuous Increasing/Decreasing

1. Finding Subarrays or Substrings: If the problem involves finding a contiguous
subarray or substring that meets specific criteria (such as having a certain sum, length, or
containing certain elements), the Sliding Window Pattern is likely applicable. Examples
include problems like finding the maximum sum subarray, the longest substring with K
distinct characters, or the smallest subarray with a sum greater than a target value.

2. Optimizing Brute-Force Solutions: If you have a brute-force solution that involves
iterating over all possible subarrays or substrings, the Sliding Window Pattern can often
help optimize the solution by reducing unnecessary iterations. By maintaining a window of
elements or characters and adjusting its size dynamically, you can avoid redundant
computations and achieve better time complexity.

3. Tracking Multiple Pointers or Indices: If the problem involves maintaining multiple
pointers or indices within the array or string, the Sliding Window Pattern provides a
systematic approach to track and update these pointers efficiently. This is especially
useful for problems involving two pointers moving inward from different ends of the array
or string.

4. Window Size Constraints: If the problem imposes constraints on the size of the window
(e.g., fixed-size window, window with a maximum or minimum size), the Sliding Window
Pattern is well-suited for handling such scenarios. You can adjust the window size
dynamically while processing the elements or characters within the array or string.

5. Time Complexity Optimization: If the problem requires optimizing time complexity
while processing elements or characters in the array or string, the Sliding Window Pattern
offers a strategy to achieve linear or near-linear time complexity. By efficiently traversing
the array or string with a sliding window, you can often achieve better time complexity
compared to naive approaches.

The Sliding Window Pattern typically involves a FOR loop and the following components:

1. Initialization: Start by initializing two pointers or indices: one for the start of the window
(left pointer) and one for the end of the window (right pointer). These pointers define the
current window.

2. Expanding the Window: Initially, the window may start with a size of 1 or 0. Move the
right pointer to expand the window by including more elements or characters from the
array or string. The window grows until it satisfies a specific condition or constraint.

3. Contracting the Window: Once the window satisfies the condition or constraint, move
the left pointer to contract the window by excluding elements or characters from the
beginning of the window. Continue moving the left pointer until the window no longer
satisfies the condition or constraint.

4. Updating Results: At each step, update the result or perform necessary operations
based on the elements or characters within the current window. This may involve
calculating the maximum/minimum value, computing a sum, checking for a pattern, or
solving a specific subproblem.

5. Termination: Continue moving the window until the right pointer reaches the end of the
array or string. At this point, the algorithm terminates, and you obtain the final result
based on the operations performed during each iteration of the window.

def max_sum_subarray(array, k):
window_sum = 0
max_sum = float('-inf') #infinitely small number

window_start = 0

for window_end in range(len(array)):

window_sum = window_sum + array[window_end] # Add the next element to the window

If the window size exceeds 'k', slide the window by one element
if window_end >= k - 1:
max_sum = max(max_sum, window_sum) # Update the maximum sum
print(max_sum)
window_sum = window_sum - array[window_start] # Subtract the element going out of the window
window_start = window_start + 1 # Slide the window to the right

return max_sum

Example usage:

array =[1, 3,-1,-3,5, 3,6, 7]

k=3

result = max_sum_subarray(array, k)
print(array)

print("Maximum sum of subarray of size", k, ":", result) # Output: 16 (subarray: [3, 6, 71)

Revision #2
Created 20 February 2024 05:47:27 by victor
Updated 26 February 2024 19:54:16 by victor

