Q and A

Here are some questions that interviewers may ask to test your basic knowledge of object oriented
design principles.

What is a...

1. Class:
e A class is a fundamental building block in object-oriented programming.
e |t serves as a blueprint for defining objects in software, containing properties and
methods.
e OOP allows for one class to inherit from another, facilitating code reuse.
2. Properties and Methods:
e Properties are the attributes (nouns) of a class, defining characteristics like color,
size, etc.
e Methods are the behaviors (verbs) of a class, defining actions like fly(), eat(), etc.
3. Inheritance:
e Inheritance allows a child class to use the methods and properties of a parent class.
e Child classes inherit behavior from parent classes, facilitating code reuse and
promoting a hierarchical structure.
e For example, a Bird class may inherit methods like eat() and sleep() from a parent
Animal class, as birds are a type of animal.
o Hierarchy Building:

o Inheritance allows for the creation of a hierarchy of classes, mirroring
real-world relationships.

o It simulates how objects relate to each other through an IS A relationship.

o Understanding IS A Relationship:

o The goal of inheritance is not just to inherit methods but to adhere to the
IS A relationship rule.

o It ensures that subclasses represent specialized versions of their
superclass and are related in a meaningful way.

o Avoiding Poor Design:

o Inheritance should not be used indiscriminately for method reuse.

o For example, a Bird class should not inherit from a Vehicle class solely to
use the move() method. This violates the IS A relationship principle and
leads to poor design.

o Key Principle:

o The IS A relationship is crucial for forming class hierarchies and ensuring
proper code reuse where it makes sense.

o Well-designed applications leverage inheritance to promote code reuse in
a meaningful and logical manner.



10.

11.

12.

13.

Public vs. Private Methods/Properties:

e Public methods and properties are accessible from external classes, while private
methods and properties are only accessible within the class itself.

e Private members cannot be inherited by child classes.

e Inner nested classes within the same class definition have access to private
members.

. Class Constructor:

e A constructor is a method used to instantiate an instance of a class.

e It typically has the same name as the class and initializes specific properties.

e Overloaded constructors allow for multiple constructor definitions with different
parameters.

. Overloaded Methods:

e Overloaded methods have the same name but a different set of parameters.
e The order of parameters matters, and parameters must have different data types to
avoid compilation errors.

. Abstract Class:

e An abstract class cannot be instantiated but can be inherited.

e It contains abstract methods that must be implemented by its child classes.

e Abstract methods are declared without implementation and must be implemented
by subclasses.

Instantiation:

e Instantiation refers to the creation of an instance (object) of a class.

e |t occurs when the class constructor method is called, providing the object with
properties and methods defined in the class blueprint.

Passing Parameters:

e Passing parameters by value allows methods to access only the parameter's value,
not the variable itself.

e Passing parameters by reference passes a pointer to the variable, allowing methods
to modify the original variable.

Method Overriding:

e Method overriding occurs when a subclass provides its own implementation for a
method inherited from a superclass.

e It allows for customizing the behavior of inherited methods in child classes.

Exception Handling:

e Exception handling is a process used to handle errors that occur during program
execution.

e It allows for graceful error handling, preventing the application from crashing and
providing users with feedback on how to proceed.

"self" Object:

e The "self" reference refers to the current instance of the object within a class.

e It is used to access instance variables and methods within the class.

Static Methods:

e Static methods exist independently of class instances and do not have access to
instance variables.

e They are useful for defining utility functions that do not require access to instance-
specific data.



When to use functional vs object oriented solutions?

e Functions are action based, and classes are state based
e Functions easier to write unit tests
e object oriented solution is better for real world simulation, or needing to keep states

What are dunder methods?

Revision #6
Created 27 February 2024 00:05:02 by victor
Updated 5 March 2024 01:09:19 by victor



