
Parallel Programming
https://www.youtube.com/watch?v=X7vBbelRXn0

High performance programming

Multiprocessing
Pros

Separate memory space
Code is usually straightforward
Takes advantage of multiple CPUs & cores
Avoids GIL limitations for cPython
Eliminates most needs for synchronization primitives unless if you use shared memory
(instead, it's more of a communication model for IPC)
Child processes are interruptible/killable
Python  multiprocessing  module includes useful abstractions with an interface much like 
threading.Thread
A must with cPython for CPU-bound processing

Cons
IPC a little more complicated with more overhead (communication model vs. shared
memory/objects)
Larger memory footprint

Example

from __future__ import annotations

import os.path
import time
from multiprocessing import Pool

import numpy as np
import scipy.io.wavfile

https://www.youtube.com/watch?v=X7vBbelRXn0


def gen_fake_data(filenames):
    print("generating fake data")
    try:
        os.mkdir("sounds")
    except FileExistsError:
        pass

    for filename in filenames:  # homework: convert this loop to pool too!
        if not os.path.exists(filename):
            print(f"creating {filename}")
            gen_wav_file(filename, frequency=440, duration=60.0 * 4)

def gen_wav_file(filename: str, frequency: float, duration: float):
    samplerate = 44100
    t = np.linspace(0., duration, int(duration * samplerate))
    data = np.sin(2. * np.pi * frequency * t) * 0.0
    scipy.io.wavfile.write(filename, samplerate, data.astype(np.float32))

def etl(filename: str) -> tuple[str, float]:
    # extract
    start_t = time.perf_counter()
    samplerate, data = scipy.io.wavfile.read(filename)

    # do some transform
    eps = .1
    data += np.random.normal(scale=eps, size=len(data))
    data = np.clip(data, -1.0, 1.0)

    # load (store new form)
    new_filename = filename.removesuffix(".wav") + "-transformed.wav"
    scipy.io.wavfile.write(new_filename, samplerate, data)
    end_t = time.perf_counter()

    return filename, end_t - start_t



def etl_demo():
    filenames = [f"sounds/example{n}.wav" for n in range(24)]
    gen_fake_data(filenames)
    start_t = time.perf_counter()

    print("starting etl")
    with Pool() as pool:
        results = pool.map(etl, filenames)

        for filename, duration in results:
            print(f"{filename} completed in {duration:.2f}s")

    end_t = time.perf_counter()
    total_duration = end_t - start_t
    print(f"etl took {total_duration:.2f}s total")

def run_normal(items, do_work):
    print("running normally on 1 cpu")
    start_t = time.perf_counter()
    results = list(map(do_work, items))
    end_t = time.perf_counter()
    wall_duration = end_t - start_t
    print(f"it took: {wall_duration:.2f}s")
    return results

def run_with_mp_map(items, do_work, processes=None, chunksize=None):
    print(f"running using multiprocessing with {processes=}, {chunksize=}")
    start_t = time.perf_counter()
    with Pool(processes=processes) as pool:
        results = pool.imap(do_work, items, chunksize=chunksize)
    end_t = time.perf_counter()
    wall_duration = end_t - start_t
    print(f"it took: {wall_duration:.2f}s")
    return results



Threading
Pros

Lightweight - low memory footprint
Shared memory - makes access to state from another context easier
Allows you to easily make responsive UIs
cPython C extension modules that properly release the GIL will run in parallel
Great option for I/O-bound applications

Cons
cPython - subject to the GIL
Not interruptible/killable
If not following a command queue/message pump model (using the  Queue  module), then
manual use of synchronization primitives become a necessity (decisions are needed for
the granularity of locking)
Code is usually harder to understand and to get right - the potential for race conditions
increases dramatically

Asyncio

The Global Interpreter Lock (GIL)
The Global Interpreter Lock (GIL) is a mechanism used in Python to ensure that only one thread
executes Python bytecode at a time in a single Python process. This means that, despite having
multiple threads, only one thread can execute Python code at any given moment. The GIL prevents
race conditions and ensures thread safety by serializing access to Python objects, which helps
simplify the implementation of the Python interpreter and makes it easier to write thread-safe
Python code.

Key points about the GIL:

1. Concurrency vs. Parallelism: While threads can run concurrently (appear to run
simultaneously), they do not run in parallel on multiple CPU cores due to the GIL. This
means that multithreading in Python may not always lead to performance improvements
for CPU-bound tasks, as only one thread can execute Python bytecode at a time.

2. Impact on I/O-bound Tasks: The GIL has less impact on I/O-bound tasks (tasks that
spend a lot of time waiting for input/output operations, such as network requests or file
I/O), as threads can overlap their waiting times.



3. Impact on CPU-bound Tasks: For CPU-bound tasks (tasks that require a lot of CPU
computation), the GIL can become a bottleneck, limiting the performance gains from
using multithreading.

4. Circumventing the GIL: Python's multiprocessing module allows bypassing the GIL by
spawning multiple processes instead of threads. Each process has its own Python
interpreter and memory space, enabling true parallelism across multiple CPU cores.

5. Trade-offs: While the GIL simplifies memory management and ensures thread safety, it
can limit the scalability of multithreaded Python programs, especially on multi-core
systems. Developers need to consider the trade-offs between simplicity and performance
when choosing between threading and multiprocessing in Python.

Overall, the GIL is a characteristic feature of Python's CPython interpreter and has implications for
multithreading and parallelism in Python programs. It's important for developers to understand its
behavior and its impact on the performance of their Python applications.
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