
Hashmap
Hashmap Pattern:

Finding Pairs
Frequency Counting
Unique Elements
Mapping Relationships
Lookup or Search Operations
Grouping or Categorization
Detecting Patterns
Optimizing Time Complexity
Avoiding Nested Loops
Storing State or Metadata

1. Finding Pairs: Problems that involve finding pairs of elements with a specific property,
such as pairs that sum up to a target value.

2. Frequency Counting: Problems that require counting the frequency of elements or
characters within a collection.

3. Unique Elements: Problems that require ensuring all elements in the collection are
unique.

4. Mapping Relationships: Problems that involve mapping relationships between
elements, such as mapping an element to its index or another related element.

5. Lookup or Search Operations: Problems that require efficient lookup or search
operations based on the properties or values of elements.

6. Grouping or Categorization: Problems that involve grouping or categorizing elements
based on certain criteria or properties.

7. Detecting Patterns: Problems that require detecting patterns or similarities between
elements or subsets of elements.

8. Optimizing Time Complexity: Problems where using a hashmap can lead to an
optimized solution with better time complexity compared to other approaches.

9. Avoiding Nested Loops: Problems where using a hashmap can help avoid nested loops
or improve the efficiency of nested loop-based solutions.

10. Storing State or Metadata: Problems that require storing additional state or metadata
associated with elements in the collection.

The typically involves a FOR loop and the following components

1. Initialize Hashmap: Create an empty hashmap (dictionary) to store elements and their
indices.

2. Iterate Through the List: Use a loop to iterate through each element in the input list
nums . Keep track of the current index using the enumerate() function.

3. Calculate Complement: For each element num , calculate its complement by
subtracting it from the target value (target - num). This complement represents the value
that, when added to num , will equal the target.

4. Check if Complement Exists: Check if the complement exists in the hashmap. If it does,
it means we've found a pair of numbers that sum up to the target. Return the indices of
the current element num and its complement from the hashmap.

5. Store Element in Hashmap: If the complement does not exist in the hashmap, it means
we haven't encountered the required pair yet. Store the current element num and its
index in the hashmap. This allows us to look up the complement efficiently in future
iterations.

6. Return Result: If no such pair is found after iterating through the entire list, return an
empty list, indicating that no pair of numbers sum up to the target.

def find_pair_with_given_sum(nums, target):
 hashmap = {} # Create an empty hashmap to store elements and their indices
 for i, num in enumerate(nums):
 complement = target - num # Calculate the complement for the current element
 if complement in hashmap:
 return [hashmap[complement], i] # If complement exists in the hashmap, return the indices
 hashmap[num] = i # Store the current element and its index in the hashmap
 return [] # If no such pair is found, return an empty list

Example usage:
nums = [2, 7, 11, 15]
target = 9
result = find_pair_with_given_sum(nums, target)
print("Indices of two numbers that sum up to", target, ":", result) # Output: [0, 1] (2 + 7 = 9)

def high(array):
 freq_map = {}
 for i in array:
 if i in freq_map:
 freq_map[i]=freq_map[i] + 1
 else:
 freq_map[i]=(1)
 return freq_map

print(high([5,7,3,7,5,6]))

{5:2 ,7:2, 3:1, 6:1}

Revision #3
Created 20 February 2024 05:35:29 by victor
Updated 26 February 2024 19:54:16 by victor

