
Good Engineering Principles

General Engineering Principles
DRY (Don't Repeat Yourself):

Avoid duplication of code
Abstract common functionalities into reusable components or functions.

Emphasis on modularity and maintainability.

KISS (Keep It Simple, Stupid):
Complex solutions should be avoided in favor of simpler, more straightforward ones
whenever possible.

YAGNI (You Aren't Gonna Need It):'
Only implement features that are necessary based on current requirements, and do
not "over engineer"

Separation of Concerns (SoC):
Divide the software into distinct sections, with each section addressing a separate
concern or responsibility.
Promotes modularity, maintainability, reusability, flexibility, and loose coupling
between components

Single Source of Truth (SSOT):
Store each piece of information (like config files) in the system in a single location.
Reduces the risk of data inconsistencies.

Fail-Fast Principle:
Identify and report errors as soon as they occur rather than allowing them to
propagate and potentially cause more significant issues later on.
Helps in diagnosing and fixing problems quickly.

Dependency Injection Design Pattern

If a class uses an object of a certain type, we are NOT also responsible for
creating the object.“

Dependency injection (Inversion of Control Technique) is a principle that helps to decrease coupling
and increase cohesion.

../_images/coupling-cohesion.pngImage not found or type unknown

What is coupling and cohesion?

Coupling and cohesion are about how tough the components are tied.

High coupling. If the coupling is high it’s like using superglue or welding. No easy way to
disassemble.
High cohesion. High cohesion is like using screws. Quite easy to disassemble and re-
assemble in a different way. It is an opposite to high coupling.

Cohesion often correlates with coupling. Higher cohesion usually leads to lower coupling and vice
versa.

Low coupling brings flexibility. Your code becomes easier to change and test.

Dependency:
When an object type and its class is coupled (has-a relationship). Ex.

Class could depend on another class could it has an attribute of that type
Object of that type is passed as a parameter to a method
Class inherits from another class, the strongest dependency since it uses

Flexibility. The components are loosely coupled. You can easily extend or
change the functionality of a system by combining the components in a
different way. You even can do it on the fly.
Testability. Testing is easier because you can easily inject mocks instead of
real objects that use API or database, etc.
Clearness and maintainability. Dependency injection helps you reveal the
dependencies. Implicit becomes explicit. And “Explicit is better than implicit”
(PEP 20 - The Zen of Python). You have all the components and dependencies
defined explicitly in a container. This provides an overview and control of the
application structure. It is easier to understand and change it.

Before:

Providing the objects that an object needs (its dependencies) instead of having it
construct them itself.

import os

class ApiClient:

After:

 def __init__(self) -> None:
 self.api_key = os.getenv("API_KEY") # <-- dependency
 self.timeout = int(os.getenv("TIMEOUT")) # <-- dependency

class Service:

 def __init__(self) -> None:
 self.api_client = ApiClient() # <-- dependency

def main() -> None:
 service = Service() # <-- dependency
 ...

if __name__ == "__main__":
 main()

import os

class ApiClient:

 def __init__(self, api_key: str, timeout: int) -> None:
 self.api_key = api_key # <-- dependency is injected
 self.timeout = timeout # <-- dependency is injected

class Service:

 def __init__(self, api_client: ApiClient) -> None:
 self.api_client = api_client # <-- dependency is injected

def main(service: Service) -> None: # <-- dependency is injected
 ...

ApiClient is decoupled from knowing where the options come from. You can read a key and a
timeout from a configuration file or even get them from a database.

Service is decoupled from the ApiClient. It does not create it anymore. You can provide a stub or other
compatible object.

Function main() is decoupled from Service. It receives it as an argument.

Flexibility comes with a price.

Now you need to assemble and inject the objects like this:

The assembly code might get duplicated and it’ll become harder to change the application
structure.

Law of Demeter / Principle of Least
Knowledge:

Module should have limited knowledge about other modules.
Encourages encapsulation and loose coupling by restricting the interaction between
objects.
Method in an object should only call:

if __name__ == "__main__":
 main(
 service=Service(
 api_client=ApiClient(
 api_key=os.getenv("API_KEY"),
 timeout=int(os.getenv("TIMEOUT")),
),
),
)

main(
 service=Service(
 api_client=ApiClient(
 api_key=os.getenv("API_KEY"),
 timeout=int(os.getenv("TIMEOUT")),
),
),
)

Itself
Its parameters
Object it creates
Its direct component objects

Violates Law of Demeter due to nesting:

Fix:

1. Create a class that represents the container structure. And,
2. Provide methods to access our inner data.

data = {
 "containers": [
 {"scoops": [{"flavor": "chocolate"}, {"flavor": "vanilla"}]},
 {"scoops": [{"flavor": "strawberry"}, {"flavor": "mint"}]}
]
}

flavor = data["containers"][0]["scoops"][0]["flavor"]

class Scoop:
 def __init__(self, flavor:str):
 self.flavor = flavor

 def get_flavor(self):

http://159.223.197.234/uploads/images/gallery/2024-03/6Jwimage.png

Object Oriented Design Principles
Solid Principles
Single Responsibility Principle (SRP):

A class should have only one reason to change.
The following handles both read/write of files and encryption, which violates SRP

 return self.flavor

class Container:
 def __init__(self):
 self.scoops = []

 def add_scoop(self,flavor:str):
 self.scoops.append(Scoop(flavor))

 def get_flavor_of_scoop(self, index:int):
 return self.scoops[index].get_flavor()

data = Container()
data.add_scoop("chocolate")
data.add_scoop("vanilla")
flavor = data.get_flavor_of_scoop(0)

http://159.223.197.234/uploads/images/gallery/2024-03/single-responsibility-principle.jpg

In this refactored version, the `FileManager` class now focuses solely on file management
operations.

Open/Closed Principle (OCP):

class FileManager:
 def __init__(self, file_path):
 self.file_path = file_path

 def read_file(self):
 pass

 def write_file(self, data):
 pass

 def encrypt_data(self, data):
 pass

 def decrypt_data(self, data):
 pass

class FileManager
 def __init__(self, file_path):
 self.file_path = file_path

 def read_file(self):
 pass

 def write_file(self, data):
 pass

class DataEncryptor:
 def encrypt_data(self, data):
 pass

 def decrypt_data(self, data):
 pass

Software entities (classes, modules, functions, etc.) should be open for extension but closed for
modification.

The function animal_sound does not conform because it cannot be closed against new kinds of
animals. If we add a new animal, Snake, We have to modify the animal_sound function. For every
new animal, a new logic is added to the animal_sound function.

When your application grows in complexity, the if statement would be repeated in the
animal_sound function each time a new animal is added, all over the application. We want to
decrease amount of if else statements.

class Animal:
 def __init__(self, name: str):
 self.name = name

 def get_name(self) -> str:
 pass

animals = [
 Animal('lion'),
 Animal('mouse')
]

def animal_sound(animals: list):
 for animal in animals:
 if animal.name == 'lion':
 print('roar')

http://159.223.197.234/uploads/images/gallery/2024-03/openclosed-principle-thumb.jpg

The Animal class has been enhanced with the addition of the make_sound method. Each animal
class extends the Animal class and provides its own implementation of the make_sound method,
defining how it produces its unique sound.

In the animal_sound function, we iterate through the array of animals and simply invoke their
respective make_sound methods. The animal_sound function remains unchanged even when
new animals are introduced. We only need to include the new animal in the animal array.

This adherence to the Open-Closed Principle ensures that the code is extensible without requiring
modifications to existing code.

 elif animal.name == 'mouse':
 print('squeak')

animal_sound(animals):

class Animal:
 def __init__(self, name: str):
 self.name = name

 def get_name(self) -> str:
 pass

 def make_sound(self):
 pass

class Lion(Animal):
 def make_sound(self):
 return 'roar'

class Mouse(Animal):
 def make_sound(self):
 return 'squeak'

class Snake(Animal):
 def make_sound(self):
 return 'hiss'

def animal_sound(animals: list):
 for animal in animals:

Liskov Substitution Principle:

Make your subclasses behave like their base classes without breaking anyone’s expectations when
they call the same methods.

This implementation violates the Liskov Substitution Principle because you can't seamlessly replace
instances of Rectangle with their Square counterparts.

Imagine someone expects a rectangle object in their code. Naturally, they would assume that it
exhibits the behavior of a rectangle, including separate width and height attributes.
Unfortunately, the Square class in your codebase violates this assumption by altering the expected
behavior defined by the object's interface.

To apply the Liskov Substitution Principle, introduce a base Shape class and make both Rectangle
and Square inherit from it:

 print(animal.make_sound())

animal_sound(animals):

class Rectangle
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def calculate_area(self):
 return self.width * self.height:

class Square(Rectangle)
 def __init__(self, side):
 super().__init__(side, side)

http://159.223.197.234/uploads/images/gallery/2024-03/liskov-substitution-principle-thumb.jpg

Introducing a common base class (Shape), ensures that objects of different subclasses can be
seamlessly interchanged wherever the superclass is expected. Both Rectangle and Square are now
siblings, each with their own set of attributes, initializer methods, and potentially more separate
behaviors. The only shared aspect between them is the ability to calculate their respective areas

With this implementation in place, you can use the Shape type interchangeably with its Square
 and Rectangle subtypes when you only care about their common behavior:

 def __setattr__(self, key, value):
 super().__setattr__(key, value)
 if key in ("width", "height"):
 self.__dict__["width"] = value
 self.__dict__["height"] = value:

from abc import ABC, abstractmethod

class Shape(ABC):
 @abstractmethod
 def calculate_area(self):
 pass

class Rectangle(Shape):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def calculate_area(self):
 return self.width * self.height

class Square(Shape):
 def __init__(self, side):
 self.side = side

 def calculate_area(self):
 return self.side ** 2d

from shapes_lsp import Rectangle, Square

def get_total_area(shapes):
 return sum(shape.calculate_area() for shape in shapes)

Three Violation of LSK Principle:

1. Violating the Contract: Derived classes should not violate the contracts defined by the base
class. If a derived class modifies or ignores the requirements specified by the base class, it can
lead to inconsistencies and unexpected behaviors.

Every Bird subclass should be able to use the methods of the abstract Bird class.

A better solution is to further abstract the method from "fly" to "move," allowing the Ostrich to run
when move method is called, and the other birds (ducks) can fly

2. Overriding Essential Behavior: Overriding crucial methods in a way that changes the
fundamental behavior defined by the base class can break the LSP. Derived classes should extend
or specialize the behavior rather than completely altering it.

get_total_area([Rectangle(10, 5), Square(5)])
75

class Bird:
 def fly(self):
 pass

class Ostrich(Bird):
 def fly(self):
 raise NotImplementedError("Ostriches cannot fly!")

bird = Bird()
bird.fly() # Output: (no implementation)

ostrich = Ostrich()
ostrich.fly() # Raises NotImplementedError

class Vehicle:
 def start_engine(self):
 print("Engine started.")

class ElectricVehicle(Vehicle):
 def start_engine(self):
 print("Engine cannot be started for an electric vehicle.")

vehicle = Vehicle()

The solutions is to change method name from "start_engine" to "start," since electric and gas
vehicles both have to start.

3. Tight Coupling with Implementation Details: Relying heavily on implementation details of
derived classes in client code can lead to tight coupling and hinder the flexibility of the LSP. Aim for
loose coupling and focus on interacting with objects through their defined interfaces.

In this example, the client code tightly couples with the concrete class MySQLConnector when
instantiating the connector object. This direct dependency on the specific class limits the flexibility
to switch to other database connectors, such as PostgreSQLConnector . To follow the Liskov
Substitution Principle, it is better to interact with objects through their common base class interface
(DatabaseConnector in this case) and use polymorphism to instantiate objects based on runtime
configuration or user input. The following fixes the issue:

vehicle.start_engine() # Output: Engine started.

electric_vehicle = ElectricVehicle()
electric_vehicle.start_engine() # Output: Engine cannot be started for an electric vehicle.

class DatabaseConnector:
 def connect(self):
 pass

class MySQLConnector(DatabaseConnector):
 def connect(self):
 print("Connecting to MySQL database...")

class PostgreSQLConnector(DatabaseConnector):
 def connect(self):
 print("Connecting to PostgreSQL database...")

Tight coupling with concrete class instantiation
connector = MySQLConnector() # Specific to MySQL

connector.connect() # Output: Connecting to MySQL database...

class DatabaseConnector:
 def connect(self):
 pass

Interface Segregation Principle (ICP)

The Interface Segregation Principle revolves around the idea that clients should not be forced to
rely on methods they do not use. To achieve this, the principle suggests creating specific interfaces
or classes tailored to the needs of individual clients.

In this example, the base class Printer defines an interface that its subclasses are required to
implement. However, the OldPrinter subclass doesn't utilize the fax() and scan() methods
because it lacks support for these functionalities.

class MySQLConnector(DatabaseConnector):
 def connect(self):
 print("Connecting to MySQL database...")

class PostgreSQLConnector(DatabaseConnector):
 def connect(self):
 print("Connecting to PostgreSQL database...")

Dependency injection with a generic database connector
def use_database_connector(connector):
 connector.connect()

Usage example
if __name__ == "__main__":
 mysql_connector = MySQLConnector()
 postgresql_connector = PostgreSQLConnector()

 use_database_connector(mysql_connector) # Output: Connecting to MySQL database...
 use_database_connector(postgresql_connector) # Output: Connecting to PostgreSQL database...

http://159.223.197.234/uploads/images/gallery/2024-03/interface-segregation-principle-thumb.jpg

Unfortunately, this design violates the ISP as it forces OldPrinter to expose an interface that it
neither implements nor requires.

In this revised design, the base classes—Printer, Fax, and Scanner—provide distinct interfaces,
each responsible for a single functionality. The OldPrinter class only inherits the Printer
interface, ensuring that it doesn't have any unused methods. On the other hand, the NewPrinter

from abc import ABC, abstractmetho

class Printer(ABC):
 @abstractmethod
 def print(self, document):
 pass

 @abstractmethod
 def fax(self, document):
 pass

 @abstractmethod
 def scan(self, document):
 pass

class OldPrinter(Printer):
 def print(self, document):
 print(f"Printing {document} in black and white...")

 def fax(self, document):
 raise NotImplementedError("Fax functionality not supported")

 def scan(self, document):
 raise NotImplementedError("Scan functionality not supported")

class ModernPrinter(Printer):
 def print(self, document):
 print(f"Printing {document} in color...")

 def fax(self, document):
 print(f"Faxing {document}...")

 def scan(self, document):
 print(f"Scanning {document}...")d

class inherits from all the interfaces, incorporating the complete set of functionalities. This
segregation of the Printer interface enables the creation of various machines with different
combinations of functionalities, enhancing flexibility and extensibility.

Dependency Inversion Principle (DIP)

from abc import ABC, abstractmetho

class Printer(ABC):
 @abstractmethod
 def print(self, document):
 pass

class Fax(ABC):
 @abstractmethod
 def fax(self, document):
 pass

class Scanner(ABC):
 @abstractmethod
 def scan(self, document):
 pass

class OldPrinter(Printer):
 def print(self, document):
 print(f"Printing {document} in black and white...")

class NewPrinter(Printer, Fax, Scanner):
 def print(self, document):
 print(f"Printing {document} in color...")

 def fax(self, document):
 print(f"Faxing {document}...")

 def scan(self, document):
 print(f"Scanning {document}...")d

The Dependency Inversion Principle focuses on managing dependencies between classes. It states
that

Dependencies should be based on abstractions rather than concrete implementations.
Abstractions should not rely on implementation details; instead, details should depend on
abstractions.

Without dependency injection, there is no dependency inversion

In this updated code, we introduced the PaymentMethod abstract base class, which declares the
process_payment() method. The PaymentProcessor class now depends on the PaymentMethod
abstraction through its constructor, rather than directly handling the payment logic. The specific
payment methods, such as CreditCardPayment and PayPalPayment, implement the
PaymentMethod interface and provide their own implementation for the process_payment()
method.

class PaymentProcessor
 def process_payment(self, payment):
 if payment.method == 'credit_card':
 self.charge_credit_card(payment)
 elif payment.method == 'paypal':
 self.process_paypal_payment(payment)

 def charge_credit_card(self, payment):
 # Charge credit card

 def process_paypal_payment(self, payment):
 # Process PayPal payment

http://159.223.197.234/uploads/images/gallery/2024-03/dependency-inversion-principle-thumb.jpg

By following this structure, the PaymentProcessor class is decoupled from the specific payment
methods, and it depends on the PaymentMethod abstraction. This design allows for greater
flexibility and easier extensibility, as new payment methods can be added by creating new classes
that implement the PaymentMethod interface without modifying the PaymentProcessor class.

Composition Over Inheritance:
Prefer composition (building objects by assembling smaller, reusable components) over inheritance
(creating new classes by extending existing ones). This approach leads to more flexible and
maintainable code.

Inheritance reduces encapsulation: we want our classes and modules to be loosely
coupled to the rest of the codebase.

A child class, instead, is strongly coupled to its parent. When a parent changes, the
change will ripple through all of its children and might break the codebase.

Testability: Reduced encapsulation results in classes being harder to test.

Composition involves using other classes to build more complex classes, there is no parent/child
relationship exists in this case. Objects are composed of other objects, through a has-a

from abc import ABC, abstractmethod

class PaymentMethod(ABC):
 @abstractmethod
 def process_payment(self, payment):
 pass

class PaymentProcessor:
 def __init__(self, payment_method):
 self.payment_method = payment_method

 def process_payment(self, payment):
 self.payment_method.process_payment(payment)

class CreditCardPayment(PaymentMethod):
 def process_payment(self, payment):
 # Code to charge credit card

class PayPalPayment(PaymentMethod):
 def process_payment(self, payment):
 # Code to process PayPal payment

 relationship, not a belongs-to relationship. This means that we can combine other objects to
reach the behavior we would like, thus avoid the subclasses explosion problem. In Python, we can
leverage a couple of mechanisms to achieve composition.

Use Inheritance sparingly. Abstract Base Class or Protocol are good examples of clean inheritance.

Make Classes Data-Oriented or Behavior-
Oriented
Use @dataclass for data-oriented classes, and consider just having a separate module with
functions for Behavior-Oriented classes

Revision #20
Created 14 February 2024 23:51:26 by victor
Updated 31 March 2024 04:12:53 by victor

