Getting Started

1] Read (and Reread) Carefully and Understand the
Problem

Putting the problem in your own words is a powerful way to solidify your understanding of the
problem and show a potential interviewer you know what you’re doing.

1. Ask Questions to Clarify Doubt: Seek clarifications if anything is unclear. Don't assume
details.

2. Provide Example Cases to Confirm: Work through examples manually to understand
the expected outcomes.

3. Plan Your Approach: Outline a logical plan and identify which DS&A could solve the
problem. Break problems to sub problems. Always acknowledge the brute force solution if
spotted.

Evaluate Input:

e |s it a single array? Or multiple arrays?
Are there any constraints on the size of the array?
Can the array contain
o negative numbers
o floating-point numbers
o ...or other data types?
Is the array presorted?
Is the array sequential?
o Can the array elements align with the index if its sequential
Do they have negative values?

Problem Constraints:

e Are there any time complexity requirements for the solution?
o O(1): operations in-place and cannot use additional memory (variables, arrays,
dictionaries)
e Are there any space considerations for the solution?
o O(1) means using Hash maps (dictionary)

Output:

e Is it a single value, an array, or something else?
e Are there any specific requirements or constraints on the output format?

Edge Cases:

e Should the algorithm handle edge cases such as

10.

11.

12.

o empty array?
o arrays with only one element?
o arrays with all identical elements?

Understand the Problem:
e Read and comprehend the problem statement.

. Clarify Doubts:

e Ask the interviewer for clarification if needed.

. Ask Questions:

e Gather more information about the problem.

Design a Plan:

e Devise an approach to solve the problem.

Break Down the Problem:

e Divide the problem into smaller sub problems if necessary.

. Choose the Right Data Structures and Algorithms:

e Select appropriate tools based on problem requirements.

. Write Pseudocode:

e QOutline the solution logic without worrying about syntax.

. Code Implementation:

e Write the actual code following best practices.
Test Your Solution:

e Verify correctness and robustness with test cases.
Optimize if Necessary:

e Improve time or space complexity if possible.

Handle Errors and Edge Cases:

e Ensure graceful handling of errors and edge cases.
Review and Debug:

e Check for errors and bugs, and troubleshoot as needed.

e Communicate Your Thought Process:

o Explain your approach and reasoning to the interviewer.

e Be Flexible and Adaptive:

1.
2.

Adapt your approach based on feedback or new insights.
Practice Regularly:
e Improve problem-solving skills through practice and mock interviews.

2. If you forget a builtin method, use
‘print(dir())' in interactive terminal

This also works on your own methods as well
print(dir(list))

[_ DUNDER_METHODS _ ‘'append', 'clear’, 'copy’, 'count’, 'extend’, 'index’, 'insert', '‘pop’, 'remove’, 'reverse’,

'sort']

For more in depth information use help(list), but remember to press 'q' in interactive prompt when
you want to end process.

| append(self, object, /)
| Append object to the end of the list.

| clear(self, /)

| Remove all items from list.

| copy(self, /)

| Return a shallow copy of the list.

| count(self, value, /)

| Return number of occurrences of value.

| extend(self, iterable, /)

| Extend list by appending elements from the iterable.

| index(self, value, start=0, stop=9223372036854775807, /)

| Return first index of value.
| Raises ValueError if the value is not present.

| insert(self, index, object, /)

| Insert object before index.

| pop(self, index=-1, /)

| Remove and return item at index (default last).

| Raises IndexError if list is empty or index is out of range.

| remove(self, value, /)

| Remove first occurrence of value.

| Raises ValueError if the value is not present.

| reverse(self, /)

| Reverse *IN PLACE*.

| sort(self, /, *, key=None, reverse=False)

| Sort the list in ascending order and return None.

| The sort is in-place (i.e. the list itself is modified) and stable (i.e. the

| order of two equal elements is maintained).

| If a key function is given, apply it once to each list item and sort them,

| ascending or descending, according to their function values.

| The reverse flag can be set to sort in descending order.

Revision #7
Created 20 February 2024 05:54:24 by victor
Updated 11 March 2024 07:07:09 by victor

