
Getting Started
1] Read (and Reread) Carefully and Understand the
Problem
Putting the problem in your own words is a powerful way to solidify your understanding of the
problem and show a potential interviewer you know what you’re doing.

1. Ask Questions to Clarify Doubt: Seek clarifications if anything is unclear. Don't assume
details.

2. Provide Example Cases to Confirm: Work through examples manually to understand
the expected outcomes.

3. Plan Your Approach: Outline a logical plan and identify which DS&A could solve the
problem. Break problems to sub problems. Always acknowledge the brute force solution if
spotted.

Evaluate Input:
Is it a single array? Or multiple arrays?
Are there any constraints on the size of the array?
Can the array contain

negative numbers
floating-point numbers
...or other data types?

Is the array presorted?
Is the array sequential?

Can the array elements align with the index if its sequential
Do they have negative values?

Problem Constraints:
Are there any time complexity requirements for the solution?

O(1): operations in-place and cannot use additional memory (variables, arrays,
dictionaries)

Are there any space considerations for the solution?
O(1) means using Hash maps (dictionary)

Output:
Is it a single value, an array, or something else?
Are there any specific requirements or constraints on the output format?

Edge Cases:
Should the algorithm handle edge cases such as

empty array?
arrays with only one element?
arrays with all identical elements?

1. Understand the Problem:
Read and comprehend the problem statement.

2. Clarify Doubts:
Ask the interviewer for clarification if needed.

3. Ask Questions:
Gather more information about the problem.

4. Design a Plan:
Devise an approach to solve the problem.

5. Break Down the Problem:
Divide the problem into smaller sub problems if necessary.

6. Choose the Right Data Structures and Algorithms:
Select appropriate tools based on problem requirements.

7. Write Pseudocode:
Outline the solution logic without worrying about syntax.

8. Code Implementation:
Write the actual code following best practices.

9. Test Your Solution:
Verify correctness and robustness with test cases.

10. Optimize if Necessary:
Improve time or space complexity if possible.

11. Handle Errors and Edge Cases:
Ensure graceful handling of errors and edge cases.

12. Review and Debug:
Check for errors and bugs, and troubleshoot as needed.

Communicate Your Thought Process:
Explain your approach and reasoning to the interviewer.

Be Flexible and Adaptive:

1. Adapt your approach based on feedback or new insights.
2. Practice Regularly:

Improve problem-solving skills through practice and mock interviews.

2. If you forget a builtin method, use
'print(dir())' in interactive terminal
This also works on your own methods as well

For more in depth information use help(list), but remember to press 'q' in interactive prompt when
you want to end process.

print(dir(list))

[__DUNDER_METHODS__ 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

| append(self, object, /)
 | Append object to the end of the list.
 |
 | clear(self, /)
 | Remove all items from list.
 |
 | copy(self, /)
 | Return a shallow copy of the list.
 |
 | count(self, value, /)
 | Return number of occurrences of value.
 |
 | extend(self, iterable, /)
 | Extend list by appending elements from the iterable.
 |
 | index(self, value, start=0, stop=9223372036854775807, /)
 | Return first index of value.
 |
 | Raises ValueError if the value is not present.
 |
 | insert(self, index, object, /)
 | Insert object before index.
 |
 | pop(self, index=-1, /)
 | Remove and return item at index (default last).
 |

 | Raises IndexError if list is empty or index is out of range.
 |
 | remove(self, value, /)
 | Remove first occurrence of value.
 |
 | Raises ValueError if the value is not present.
 |
 | reverse(self, /)
 | Reverse *IN PLACE*.
 |
 | sort(self, /, *, key=None, reverse=False)
 | Sort the list in ascending order and return None.
 |
 | The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
 | order of two equal elements is maintained).
 |
 | If a key function is given, apply it once to each list item and sort them,
 | ascending or descending, according to their function values.
 |
 | The reverse flag can be set to sort in descending order.

Revision #7
Created 20 February 2024 05:54:24 by victor
Updated 11 March 2024 07:07:09 by victor

