
Functions

Positional and Keyword Arguments

Positional Arguments:
Positional arguments are the most common type of arguments in Python. They are passed to a
function in the same order as they are defined in the function's parameter list.

Keyword Arguments:
Keyword arguments are passed to a function with a specific keyword identifier. They do not rely on
the order of parameters defined in the function.

Default Values:

def greet(name, age):
 print(f"Hello, {name}! You are {age} years old.")

Calling the function with positional arguments
greet("Alice", 30)

def greet(name, age):
 print(f"Hello, {name}! You are {age} years old.")

Calling the function with keyword arguments
greet(age=25, name="Bob")

You can also provide default values for function parameters, which allows the function to be called
with fewer arguments.

Mixing Positional and Keyword Arguments:
You can mix positional and keyword arguments in a function call, but positional arguments must
come before keyword arguments.

Understanding these concepts will help you effectively pass arguments to functions in Python,
providing flexibility and clarity in your code.

* args
In Python, when * is used as a prefix for a parameter in a function definition, it indicates that the
parameter is a variable-length argument list, often referred to as "arbitrary positional arguments"
or "varargs". This means that the function can accept any number of positional arguments, and
they will be packed into a tuple.

def greet(name="Anonymous", age=18):
 print(f"Hello, {name}! You are {age} years old.")

Calling the function with default values
greet()

def greet(name, age):
 print(f"Hello, {name}! You are {age} years old.")

Mixing positional and keyword arguments
greet("Charlie", age=35)

def my_function(*args):
 print(args)

my_function(1, 2, 3, 4)

In this example, *args is used to collect all the positional arguments passed to my_function() into a
tuple named args . When you call my_function(1, 2, 3, 4) , the output will be (1, 2, 3, 4) .

You can also combine *args with other regular parameters:

Here, a and b are regular parameters, while *args collects any additional positional arguments
into a tuple.

This feature is particularly useful when you want to create functions that can handle a variable
number of arguments, providing flexibility in your code.

Putting * as the first argument force manual typing of the argument when called

def my_function(a, b, *args):
 print("Regular parameters:", a, b)
 print("Extra positional arguments:", args)

my_function(1, 2, 3, 4, 5)

def place_order(* ,item, price, quantity)
 print(f" {quantity} unitys of {item} at {price} price")

def what_could_go_wrong():
 place_order(item="SPX", price=4500, quantity=10000)

Revision #3
Created 7 March 2024 04:59:25 by victor
Updated 7 March 2024 05:35:11 by victor

