
Encapsulation
Class Creation Considerations:

1. Encapsulation: the bundling of Variables and Methods in a Class to ensures that
the behavior of an object can only be affected through its Public API. It lets us control
how much a change to one object will impact other parts of the system by ensuring
that there are no unexpected dependencies between unrelated components.

Attributes: Variables are assigned attributes within a __init__ function
Public API: Methods are functions that manipulate the Attributes, such as
get/set

2. Information Hiding: Restricting access to implementation details and violating
state invariance

Protected Variable:
Members of the class that cannot be accessed outside the class but can
be accessed from within the class and its subclasses
In Python, Using underscore (_name) to denote Protected

Private Variable:
Members can neither be accessed outside the class nor by any base class
In Python, double underscore (__name) to denote Private.

Note that Python is not a true Protected or Private enforced by the language
like C++

Can still access protected and private variables via dot notation (
hello._name)

from dataclasses import dataclass
from enum import Enum

http://159.223.197.234/uploads/images/gallery/2024-03/wb1image.png

from typing import Any

class PaymentStatus(Enum):
 CANCELLED = "cancelled"
 PENDING = "pending"
 PAID = "paid"

class PaymentStatusError(Exception):
 pass

@dataclass
class OrderNoEncapsulationNoInformationHiding:
 """Anyone can get the payment status directly via the instance variable.
 There are no boundaries whatsoever."""

 payment_status: PaymentStatus = PaymentStatus.PENDING

@dataclass
class OrderEncapsulationNoInformationHiding:
 """There's an interface now that you should use that provides encapsulation.
 Users of this class still need to know that the status is represented by an enum type."""

 _payment_status: PaymentStatus = PaymentStatus.PENDING

 def get_payment_status(self) -> PaymentStatus:
 return self._payment_status

 def set_payment_status(self, status: PaymentStatus) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError(
 "You can't change the status of an already paid order."
)
 self._payment_status = status

@dataclass

class OrderEncapsulationAndInformationHiding:
 """The status variable is set to 'private'. The only thing you're supposed to use is the is_paid
 method, you need no knowledge of how status is represented (that information is 'hidden')."""

 _payment_status: PaymentStatus = PaymentStatus.PENDING

 def is_paid(self) -> bool:
 return self._payment_status == PaymentStatus.PAID

 def is_cancelled(self) -> bool:
 return self._payment_status == PaymentStatus.CANCELLED

 def cancel(self) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("You can't cancel an already paid order.")
 self._payment_status = PaymentStatus.CANCELLED

 def pay(self) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("Order is already paid.")
 self._payment_status = PaymentStatus.PAID

@dataclass
class OrderInformationHidingWithoutEncapsulation:
 """The status variable is public again (so there's no boundary),
 but we don't know what the type is - that information is hidden. I know, it's a bit
 of a contrived example - you wouldn't ever do this. But at least it shows that
 it's possible."""

 payment_status: Any = None

 def is_paid(self) -> bool:
 return self.payment_status == PaymentStatus.PAID

 def is_cancelled(self) -> bool:
 return self.payment_status == PaymentStatus.CANCELLED

 def cancel(self) -> None:
 if self.payment_status == PaymentStatus.PAID:

 raise PaymentStatusError("You can't cancel an already paid order.")
 self.payment_status = PaymentStatus.CANCELLED

 def pay(self) -> None:
 if self.payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("Order is already paid.")
 self.payment_status = PaymentStatus.PAID

def main() -> None:
 test = OrderInformationHidingWithoutEncapsulation()
 test.pay()
 print("Is paid: ", test.is_paid())

if __name__ == "__main__":
 main()

Revision #8
Created 26 February 2024 01:47:40 by victor
Updated 1 April 2024 03:40:12 by victor

