
Creational
Creational design patterns are used to

Create objects effectively
Add flexibility to software design

Many designs start by using Factory Method (less complicated and more customizable via
subclasses) and evolve toward Abstract Factory, Prototype, or Builder (more flexible, but more
complicated).

Factory Pattern
Object Creation without Exposing Concrete Classes:

Factories provide a centralized way to create objects, allowing for better
encapsulation and abstraction.

Dynamic Object Creation:
Factories are useful when the exact class of the object to be created may vary
at runtime based on certain conditions or configurations.
Factories can select the appropriate subclass or implementation to create
based on these conditions.

Polymorphic Object Creation:
Allowing clients to create objects without knowing the specific subclass or
implementation being instantiated.
This promotes loose coupling and simplifies client code.

Difference to Dependency Injection:
When using a factory your code is still actually responsible for
creating objects. By DI you outsource that responsibility to another
class or a framework, which is separate from your code.

class Burger:
 def __init__(self, ingredients):
 self.ingredients = ingredients

 def print(self):
 print(self.ingredients)

class BurgerFactory:

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory
https://refactoring.guru/design-patterns/prototype
https://refactoring.guru/design-patterns/builder

Copy

Output

Builder Pattern
1. Builder Pattern:

Complex Object Construction:
Create complex objects with multiple optional or mandatory parameters, and
the number of parameters makes constructor overloading impractical or
confusing.

Fluent Interface:
Allowing for a more expressive and readable way to construct objects,
especially when chaining multiple method calls together.

Flexible Object Creation:

 def createCheeseBurger(self):
 ingredients = ["bun", "cheese", "beef-patty"]
 return Burger(ingredients)

 def createDeluxeCheeseBurger(self):
 ingredients = ["bun", "tomatoe", "lettuce", "cheese", "beef-patty"]
 return Burger(ingredients)

 def createVeganBurger(self):
 ingredients = ["bun", "special-sauce", "veggie-patty"]
 return Burger(ingredients)

burgerFactory = BurgerFactory()
burgerFactory.createCheeseBurger().print()
burgerFactory.createDeluxeCheeseBurger().print()
burgerFactory.createVeganBurger().print()

['bun', 'cheese', 'beef-patty']

['bun', 'tomatoe', 'lettuce', 'cheese', 'beef-patty']

['bun', 'special-sauce', 'veggie-patty']

“

Create objects in a step-by-step manner, allowing for more flexibility in the
construction process.
When different parts of the object need to be configured independently or
when the construction process is dynamic.

Parameter Omission:
Allow parameters to be omitted or set to default values, providing more control
over object creation and reducing the need for multiple overloaded
constructors

class Burger:
 def __init__(self):
 self.buns = None
 self.patty = None
 self.cheese = None

 def setBuns(self, bunStyle):
 self.buns = bunStyle

 def setPatty(self, pattyStyle):
 self.patty = pattyStyle

 def setCheese(self, cheeseStyle):
 self.cheese = cheeseStyle

class BurgerBuilder:
 def __init__(self):
 self.burger = Burger()

 def addBuns(self, bunStyle):
 self.burger.setBuns(bunStyle)
 return self

 def addPatty(self, pattyStyle):
 self.burger.setPatty(pattyStyle)
 return self

 def addCheese(self, cheeseStyle):
 self.burger.setCheese(cheeseStyle)
 return self

 def build(self):

Singleton

https://www.youtube.com/watch?v=Rm4JP7JfsKY&t=634s

Why it is bad:

If you inherit from it, you can get multiple instances, which shouldn't be allowed.
Testing code is hard with singleton because you cannot create multiple fresh instances for
testing
Does not work well with multi threaded applications because raise condition of

 return self.burger

burger = BurgerBuilder() \
 .addBuns("sesame") \
 .addPatty("fish-patty") \
 .addCheese("swiss cheese") \
 .build()

Singleton Pattern is considered unpythonic

class ApplicationState:
 instance = None

 def __init__(self):
 self.isLoggedIn = False

 @staticmethod
 def getAppState():
 if not ApplicationState.instance:
 ApplicationState.instance = ApplicationState()
 return ApplicationState.instance

appState1 = ApplicationState.getAppState()
print(appState1.isLoggedIn)

appState2 = ApplicationState.getAppState()
appState1.isLoggedIn = True

https://www.youtube.com/watch?v=Rm4JP7JfsKY&t=634s

Better Methodologies than Singleton:
Object Pool Pattern manages a fixed number of instances instead of one,

ex. Managing database connections of graphics objects with a lot of data drawn over
and over again

 Global Object pattern, as in the Constant pattern, a module instantiates an object at
import time and assigns it a name in the module’s global scope.

But the object does not simply serve as data; it is not merely an integer, string, or
data structure. Instead, the object is made available for the sake of the methods it
offers — for the actions it can perform.

Python's module system and the fact that modules are imported only once make it easy to
implement singleton behavior using modules.

print(appState1.isLoggedIn)
print(appState2.isLoggedIn)

>> False
>> True
>> True

Revision #16
Created 14 February 2024 22:49:01 by victor
Updated 2 April 2024 05:22:55 by victor

