Class Creation: Getter/Setter
VS Property

Getter and Setter Pattern comes from OOP languages such as C++ and Java in order to adhere to

e Encapsulation
o the bundling of data/attributes and methods.
o restricting access to implementation details and violating state invariants

In Python it is considered unpythonic. Instead, use @property decorator instead

Class without Getter and Setter

Basic method of setting and getting attributes in Python
If this class had no methods, and only an __init__, then this would be fine.

This has no Encapsulation because it directly accesses the attributes

class Celsius:
def __init_ (self, temperature=0):

self.temperature = temperature
def to_fahrenheit(self):
return (self.temperature * 1.8) + 32
Create a new object

human = Celsius()

Set the temperature

human.temperature = 37

Get the temperature attribute

print(human.temperature)

Get the to_fahrenheit method

print(human.to_fahrenheit())

>> 37
>> 98.60000000000001

Getter and Setter Pattern

e Class Attributes...
o are variables where you can access through the instance, class, or both.
o holds an internal state.
o Two ways to access class attributes:
1. Directly (breaks encapsulation)
o If accessed directly, they become part of Public API
o Only use if sure that no behavior (methods) will ever be attached to the
variables (@dataclass?)
o Changing implementation will be problematic:
o Converting stored attribute -> computed attribute. Want to be able
to store attributes instead of recomputing each time
o No internal implementation
2. Methods (ideal)
o Two methods to respect encapsulation
o Getter: Allows Access
o Setter: Allows Setting or Mutation

e Implementation
1. Making attributes Non-public
o use underscore in variable name (_name)
2. Writing Getter and Setter Methods for each attribute
o In a class, __init__is the attributes (variables)

Making Getters and Setter methods

PRO: Adheres to Encapsulation since get/set methods is used to change the attributes instead of direct access
PRO: Adheres to a faux Information Hiding since converting temperature to _temperature, but no
private/protected vars in Python

CON: Has more code to change

class Celsius:
def __init_ (self, temperature=0):

self.set_temperature(temperature)

def to_fahrenheit(self):

return (self.get temperature() * 1.8) + 32

getter method
def get_temperature(self):

return self._temperature

setter method
def set_temperature(self, value):
if value < -273.15:
raise ValueError("Temperature below -273.15 is not possible.")

self. temperature = value

Create a new object, set_temperature() internally called by __init__

human = Celsius(37)

Get the temperature attribute via a getter

print(human.get_temperature())

Get the to_fahrenheit method, get _temperature() called by the method itself

print(human.to_fahrenheit())

new constraint implementation

human.set_temperature(-300)

Get the to_fahreheit method

print(human.to_fahrenheit())

>> 37

>> 98.60000000000001

>> Traceback (most recent call last):

>> File "<string>", line 30, in <module>

>> File "<string>", line 16, in set_temperature

>> ValueError: Temperature below -273.15 is not possible.

Property Class

using property class

class Celsius:

def __init_ (self, temperature=0):

self.temperature = temperature

def to_fahrenheit(self):

return (self.temperature * 1.8) + 32

getter
def get_temperature(self):
print("Getting value...")

return self._temperature

setter
def set_temperature(self, value):
print("Setting value...")
if value < -273.15:
raise ValueError("Temperature below -273.15 is not possible")

self. temperature = value

creating a property object

temperature = property(get_temperature, set temperature)

human = Celsius(37)
print(human.temperature)
print(human.to_fahrenheit())

human.temperature = -300

The reason is that when an object is created, the _init_() method gets called. This method has the
line self.temperature = temperature . This expression automatically calls set temperature() .

Similarly, any access like c.temperature automatically calls get temperature() . This is what property
does.

By using property , we can see that no modification is required in the implementation of the value
constraint. Thus, our implementation is backward compatible.

The @property Decorator

In Python, property() is a built-in function that creates and returns a property object. The syntax of

this function is:

property(fget=None, fset=None, fdel=None, doc=None)
Here,

o fget is function to get value of the attribute

e fset is function to set value of the attribute

e fdel is function to delete the attribute
e doc is a string (like a comment)

As seen from the implementation, these function arguments are optional.

A property object has three methods, getter() , setter(), and deleter() to specify fget, fset and fdel
at a later point. This means, the line:

temperature = property(get_temperature,set_temperature)

can be broken down as:

make empty property

temperature = property()

assign fget

temperature = temperature.getter(get_temperature)

assign fset

temperature = temperature.setter(set_temperature)

These two pieces of code are equivalent.

Programmers familiar with Python Decorators can recognize that the above construct can be
implemented as decorators.

We can even not define the names get temperature and set temperature as they are unnecessary

and pollute the class namespace.

For this, we reuse the temperature name while defining our getter and setter functions. Let's look at
how to implement this as a decorator:

https://www.programiz.com/python-programming/methods/built-in/property
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/decorator
https://www.programiz.com/python-programming/namespace

Using @property decorator
class Celsius:
def _init_ (self, temperature=0):

self.temperature = temperature

def to_fahrenheit(self):

return (self.temperature * 1.8) + 32

@property
def temperature(self):
print("Getting value...")

return self._temperature

@temperature.setter
def temperature(self, value):
print("Setting value...")
if value < -273.15:
raise ValueError("Temperature below -273 is not possible")

self._temperature = value

create an object

human = Celsius(37)

print(human.temperature)

print(human.to_fahrenheit())

coldest_thing = Celsius(-300)

>>Setting value...

>>Getting value...

>>37

>>Getting value...
>>98.60000000000001.

>>Setting value...

>>Traceback (most recent call last):
>> File "", line 29, in

>> File"", line 4, in _init__

>> File "", line 18, in temperature

>>ValueError: Temperature below -273 is not possible

Revision #5
Created 30 March 2024 07:17:02 by victor
Updated 30 March 2024 22:07:07 by victor

