
Basics Cheatsheet

Built-in 

 

Casting

 

# primitives
x = 1             # integer
x = 1.2           # float
x = True          # bool
x = None          # null
x = float('inf')  # infinity (float)

# objects
x = [1, 2, 3] # list (Array)
x = (1, 2, 3) # tuple (Immutable Array)
x = {1: "a"}  # dict (HashMap)
x = {1, 2, 3} # set
x = "abc123"  # str (Immutable String)

n = 7
str(n)   # '7'
int('7') #  7

x = [1,2,3]
set(x)   # {1,2,3}
tuple(x) # (1,2,3)

s = {1,2,3}
list(s)  # [3,1,2]  (sets don't store order)



Basic Operations

 

a = [1] # array with the number 1 in it
b = [1]

a == b  # True, compares value
a is b  # False, compares memory location (exact comparison)

1 / 2    # .5 (division)
1 % 2    # 1 (remainder)
1 // 2   # 0 (division, rounding down)
2 ** 5   # 32 (power, 2^5)

Falsy Values
In Python, you can use anything as a boolean. Things that "feel false" like None, 0, and empty data
structures evaluate to False.

Loops with  range

a = None
b = []
c = [15]

if a:
    print('This does not print') 
if b:
    print('This does not print') 
if c:
    print('This prints')



 

for i in range(4):
    # 0 1 2 3

for i in range(1, 4):
    # 1 2 3

for i in range(1, 6, 2): # loop in steps of 2
    # 1 3 5

for i in range(3, -1, -1): # loop backwards
    # 3 2 1 0

Loops over Data Structures

 

arr = ["a", "b"]
for x in arr:
    # "a" "b"

hmap = {"a": 4, "b": 5}
for x in hmap:
    # "a" "b"

List Features
x = [1,2] + [3,4]  # [1,2,3,4]
x = [0, 7]*2       # [0,7,0,7], don't use this syntax for 2D arrays

x = [0,1,2,3]
x[2:]     # [2,3]
x[:2]     # [0,1]
x[1:4]    # [1,2,3] 
x[3::-1]  # [3,2,1,0]



List Comprehensions
Python has nice syntax for creating Arrays. Here's an example:

Here's the general form of list comprehension, and what it's actually doing:

x = [a*b   for a in A   for b in B   if a > 5]
# Is equivalent to:
x = []
for a in A:
    for b in B:
        if a > 5:
            x.append(a*b)

x = [2*n for n in range(4)] 
#   [0, 2, 4, 6]

x = [a for a in [1,2,3,4,5,6] if a % 2 == 0]
#   [2, 4, 6]

# 2 x 3 matrix of zeros
x = [[0 for col in range(3)] for row in range(2)]
#  [[0, 0, 0],
#   [0, 0, 0]]

Generator Comprehensions

x[-1]     # 3

y = reversed(x)  # reversed array of x
x.reverse()      # reverses x in-place using no extra memory
sorted(x)        # sorted array of x
x.sort()         # sorts x in-place using no extra memory



Generator Comprehensions are List Comprehensions, but they generate values lazily and can stop
early. To do a generator comprehension, just use  ()  instead of  [] .

# stops early if finds True
any(SlowFn(i) for i in range(5)) 

# does not run the loop yet
computations = (SlowFn(i) for i in range(5)) 

# runs the loop - might stop early
for x in computations: 
    if not x: 
        break

Note that  ()  can mean a tuple, or it can mean a generator. It just depends on context. You can
think of Generator Comprehensions as being implemented exactly the same as List
Comprehensions, but replacing the word  return  with  yield  (you don't have to know about this for
an interview).

String Features
# you can use '' or "", there's no difference
x = 'abcde'
y = "abcde"
x[2] # 'c'

for letter in x:
    # "a" "b" "c" "d" "e"

x = 'this,is,awesome'
y = x.split(',')
print(y) # ['this', 'is', 'awesome']

x = ['this', 'is', 'awesome']
y = '!'.join(x)
print(y) # 'this!is!awesome'



Set Features

 

x = {"a", "b", "c"}
y = {"c", "d", "e"}
y = x | y # merge sets, creating a new set {"a", "b", "c", "d", "e"}

Functions
You declare a function using the  def  keyword:

All variables you declare inside a function in Python are local. In most cases you need to use 
nonlocal  if you want to set variables outside a function, like below with  x  and  y

# convert between character and unicode number
ord("a") # 97
chr(97) # 'a'

def my_function():
    # do things here

my_function() # runs the code in the function

x = 1
y = 1
z = [1]

def fn():
    nonlocal y
    y = 100      # global
    x = 100      # local
    z[0] = 100   # global (this would normally give an error. to avoid this, python refers to a more globally scoped 
variable)
fn()



Anonymous Functions
You can also declare a function in-line, using the keyword  lambda . This is just for convenience.
These two statements are both the same function:

Boolean Operators
You can use the  any  function to check if any value is true, and the  all  to check if all values are
true.

Ternary Operator
Most languages have a "Ternary operator" that gives you a value based on an if statement. Here's
Python's:

x    # 1
y    # 100
z[0] # 100

def fn(x,y):
    return x + y

lambda x,y: x + y

any([True, False, False]) # True
all([True, False, False]) # False

x = [1,2,3]
# checks if any value is equal to 3
any(True if val == 3 else False for val in x) # True



Newlines
You can write something on multiple lines by escaping the newline, or just using parentheses.

Object Destructuring
You can assign multiple variables at the same time. This is especially useful for swapping variables.
Here are a few examples:

0 if x == 5 else 1 # gives 0 if x is equal to 5, else gives 1

# Many other languages write this as (x == 5 ? 0 : 1)

x = 5 \
    + 10 \
    + 6

x = (
    5 
    + 10
    + 6
)

# sets a=1, b=2
a,b = 1,2

# sets a=b, b=a, without needing a temporary variable
a,b = b,a

# sets a=1, b=2, c=3, d=4, e=[5, 6]
[a, b, [c, d], e] = [1, 2, [3, 4], [5, 6]]



Python Reference
Here's a refrence to the offical Python docs.

https://docs.python.org/3/library/index.html

The Built-in Functions and Built-in Types sections are the most useful parts to skim, although it's
totally optional reading. The docs are not formatted in a very readable way.

Revision #9
Created 26 February 2024 22:04:44 by victor
Updated 22 October 2024 22:19:12 by victor

https://docs.python.org/3/library/index.html

