
Architectural

Monolith 
A monolithic architecture is an architectural pattern where all components of an application are
combined into a single codebase and deployed as a single unit. In a monolithic design pattern:

1. Codebase: All the application's functionalities, including the user interface, business
logic, and data access code, are packaged together into a single codebase.

2. Deployment: The entire application is deployed as a single unit, typically on a single
server or a set of servers.

3. Communication: Communication between different components of the application
typically occurs through function calls or method invocations within the same process.

4. Scalability: Scaling a monolithic application involves scaling the entire application, which
can be challenging as it requires replicating the entire application stack.

Monolithic architectures are often simpler to develop and deploy initially, especially for small to
medium-sized applications. They offer advantages such as ease of development, debugging, and
testing, as well as simpler deployment and management.

However, as applications grow in complexity and scale, monolithic architectures can become
harder to maintain and scale. They may suffer from issues such as tight coupling between
components, limited scalability, and difficulty in adopting new technologies or frameworks.

In contrast, microservices architecture, where an application is decomposed into smaller,
independently deployable services, offers benefits such as improved scalability, flexibility, and
maintainability. However, microservices come with their own set of challenges, such as increased
complexity in managing distributed systems and communication overhead between services.

Ultimately, the choice between monolithic and microservices architectures depends on factors such
as the size and complexity of the application, scalability requirements, development team
expertise, and organizational constraints.

Model View Controller
The MVC architecture is very broad and can change depending on the programming language and
type of application you are doing, so in this case, yes your approach can be accepted as correct.



What I have learned from static typed languages is that you define the model and views as
complete separate entities, and the controller takes an instance of both model and views as
parameters.

What you need to ask yourself to define if your app is MVC is the following:

If I change something in the view do I break anything in the model?
If I change something in the model do I break anything in the view?
Is the controller communicating everything in both view and model so that they don't
have to communicate with each other?

If nothing breaks and the controller does all of the communication then yes, your application is
MVC.

You might want to look into design patterns such as Singleton, Factory and others that all use the
MVC architecture and define ways to implement it.

Microservices

Others
Event-Driven Architecture (EDA) and Service-Oriented Architecture (SOA) are both architectural
patterns used in software design, but they have different approaches and focus areas. Here's a
comparison between the two:

1. Communication Paradigm:
EDA: In Event-Driven Architecture, communication between components is based on
events. Components publish events when certain actions or changes occur, and
other components subscribe to these events and react accordingly. This
asynchronous communication model allows for loose coupling between components
and enables real-time responsiveness.
SOA: In Service-Oriented Architecture, communication between components is
typically based on service interfaces. Services expose their functionality through
well-defined interfaces (APIs) that other services or clients can invoke.
Communication in SOA is often synchronous, although asynchronous messaging can
also be used.

2. Granularity:
EDA: EDA tends to be more fine-grained, with events representing specific actions or
changes within the system. Components can react to individual events and perform
specific actions accordingly.
SOA: SOA can vary in granularity, but services tend to encapsulate larger units of
functionality. Services are typically designed to represent business capabilities or
domain entities, providing coarse-grained operations.



3. Flexibility:
EDA: EDA offers greater flexibility and agility, as components can react to events in
a dynamic and decentralized manner. New components can be added or existing
components modified without affecting the overall system.
SOA: SOA also provides flexibility, but to a lesser extent compared to EDA. Changes
to services may require coordination between service providers and consumers, and
service contracts need to be carefully managed to ensure compatibility.

4. Scalability:
EDA: EDA inherently supports scalability, as components can be scaled
independently based on event processing requirements. Event-driven systems can
handle bursts of traffic more gracefully by distributing processing across multiple
instances.
SOA: SOA can be scalable, but scaling individual services may not always be
straightforward, especially if services have dependencies or shared resources.

5. Complexity:
EDA: EDA can introduce complexity, particularly in managing event propagation,
event schemas, and ensuring event consistency across components. Event-driven
systems may also require additional infrastructure for event processing and
management.
SOA: SOA tends to be less complex compared to EDA, as services have well-defined
interfaces and interactions. However, managing service contracts, versioning, and
service discovery can still introduce complexity, especially in large-scale
deployments.

In summary, Event-Driven Architecture is well-suited for scenarios where real-time responsiveness,
loose coupling, and flexibility are paramount, while Service-Oriented Architecture provides a more
structured approach to building distributed systems with reusable and interoperable services. The
choice between EDA and SOA depends on the specific requirements, constraints, and trade-offs of
the application or system being designed.

Revision #8
Created 14 February 2024 22:57:28 by victor
Updated 26 February 2024 01:06:04 by victor


