
Object Oriented
Programming

Object Oriented Basics
Encapsulation
Abstraction
Inheritance
Polymorphism
Built-in Methods
Class Creation: Getter/Setter vs Property

Object Oriented Basics
Yes, all the object-oriented programming (OOP) terms and concepts mentioned apply to Python.
Python is a multi-paradigm programming language that fully supports object-oriented
programming. In fact, OOP is one of the primary programming paradigms used in Python, and its
syntax and features are designed to facilitate object-oriented design and development.

Here's how these OOP terms apply to Python specifically:

1. Class: In Python, classes are defined using the class keyword, and they encapsulate data
(attributes) and behavior (methods). Objects are created by instantiating classes using
the class name followed by parentheses, optionally passing arguments to the constructor
(__init__ method).

2. Object: Objects in Python are instances of classes. They have attributes (instance
variables) and methods (functions defined within the class). Objects are created
dynamically at runtime and can be assigned to variables, passed as arguments, and
returned from functions.

3. Attribute: Attributes in Python are data items associated with objects. They can be
accessed using dot notation (object.attribute) or through methods defined within the class.
Attributes can be public, private (using name mangling), or protected (using single
underscore convention).

4. Method: Methods in Python are functions defined within a class that operate on its
instances. They are defined using the def keyword within the class definition. Methods
can access and modify the object's state (attributes) and behavior.

5. Inheritance: Python supports single and multiple inheritance, allowing classes to inherit
attributes and methods from one or more parent classes. Inheritance relationships are
defined using parentheses after the class name in the class definition.

6. Encapsulation: Python supports encapsulation through the use of classes, which bundle
data and methods together. Python does not have built-in support for access modifiers
like private or protected, but encapsulation can be achieved through conventions and
name mangling.

7. Polymorphism: Python supports polymorphism through method overriding and duck
typing. Method overriding allows subclasses to provide their own implementation of
methods inherited from parent classes, while duck typing allows objects to be treated
uniformly based on their behavior rather than their type.

8. Abstraction: Python supports abstraction through classes and interfaces, allowing
programmers to model real-world entities and concepts while hiding implementation
details. Python encourages writing code that operates on interfaces rather than concrete
implementations.

9. Constructor and Destructor: In Python, the constructor is defined using the __init__
method, which is automatically called when an object is instantiated. Python does not
have explicit destructors, but the __del__ method can be used to define cleanup tasks

when an object is garbage-collected.
10. Instance, Class, and Instance Variables: Python distinguishes between instance

variables (attributes specific to individual objects) and class variables (attributes shared
among all instances of a class). Instance variables are defined within methods using the
self parameter, while class variables are defined outside methods within the class.

11. Method Overriding and Overloading: Python supports method overriding by allowing
subclasses to provide their own implementations of methods inherited from parent
classes. However, Python does not support method overloading in the traditional sense
(having multiple methods with the same name but different signatures), but you can
achieve similar functionality using default parameter values or variable-length argument
lists.

Overall, Python's support for object-oriented programming makes it a versatile and powerful
language for designing and implementing software systems using OOP principles.

In Python, the self keyword is used within methods of a class to refer to the instance of the class
itself. It is passed implicitly as the first argument to instance methods, allowing those methods to
access and modify attributes of the instance. Here's a guideline on when to use self and when not
to:

Use self :
1. Inside Instance Methods: Within instance methods, use self to access instance

attributes and methods.

When Assigning Instance Attributes: Use self to assign instance attributes within the __init__
method or other instance methods.

class MyClass:
 def __init__(self, value):
 self.value = value

 def print_value(self):
 print(self.value)

obj = MyClass(10)
obj.print_value() # Output: 10

class MyClass:
 def __init__(self, value):

Do Not Use self :
Outside Class Definition: When accessing class attributes or methods outside the class
definition, you do not need to use self .

Static Methods and Class Methods: In static methods and class methods, self is not used
because these methods are not bound to a specific instance.

Remember that self is a convention in Python, and you could technically name the first parameter
of an instance method anything you like, but using self is highly recommended for readability and
consistency with Python conventions.

 self.value = value

obj = MyClass(10)

class MyClass:
 class_attribute = 100

 def __init__(self, value):
 self.instance_attribute = value

obj = MyClass(10)
print(obj.instance_attribute) # Output: 10
print(MyClass.class_attribute) # Output: 100

class MyClass:
 @staticmethod
 def static_method():
 print("Static method")

 @classmethod
 def class_method(cls):
 print("Class method")

MyClass.static_method() # Output: Static method
MyClass.class_method() # Output: Class method

Encapsulation
Class Creation Considerations:

1. Encapsulation: the bundling of Variables and Methods in a Class to ensures that
the behavior of an object can only be affected through its Public API. It lets us control
how much a change to one object will impact other parts of the system by ensuring
that there are no unexpected dependencies between unrelated components.

Attributes: Variables are assigned attributes within a __init__ function
Public API: Methods are functions that manipulate the Attributes, such as
get/set

2. Information Hiding: Restricting access to implementation details and violating
state invariance

Protected Variable:
Members of the class that cannot be accessed outside the class but can
be accessed from within the class and its subclasses
In Python, Using underscore (_name) to denote Protected

Private Variable:
Members can neither be accessed outside the class nor by any base class
In Python, double underscore (__name) to denote Private.

Note that Python is not a true Protected or Private enforced by the language
like C++

Can still access protected and private variables via dot notation (
hello._name)

from dataclasses import dataclass
from enum import Enum
from typing import Any

http://159.223.197.234/uploads/images/gallery/2024-03/wb1image.png

class PaymentStatus(Enum):
 CANCELLED = "cancelled"
 PENDING = "pending"
 PAID = "paid"

class PaymentStatusError(Exception):
 pass

@dataclass
class OrderNoEncapsulationNoInformationHiding:
 """Anyone can get the payment status directly via the instance variable.
 There are no boundaries whatsoever."""

 payment_status: PaymentStatus = PaymentStatus.PENDING

@dataclass
class OrderEncapsulationNoInformationHiding:
 """There's an interface now that you should use that provides encapsulation.
 Users of this class still need to know that the status is represented by an enum type."""

 _payment_status: PaymentStatus = PaymentStatus.PENDING

 def get_payment_status(self) -> PaymentStatus:
 return self._payment_status

 def set_payment_status(self, status: PaymentStatus) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError(
 "You can't change the status of an already paid order."
)
 self._payment_status = status

@dataclass
class OrderEncapsulationAndInformationHiding:

 """The status variable is set to 'private'. The only thing you're supposed to use is the is_paid
 method, you need no knowledge of how status is represented (that information is 'hidden')."""

 _payment_status: PaymentStatus = PaymentStatus.PENDING

 def is_paid(self) -> bool:
 return self._payment_status == PaymentStatus.PAID

 def is_cancelled(self) -> bool:
 return self._payment_status == PaymentStatus.CANCELLED

 def cancel(self) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("You can't cancel an already paid order.")
 self._payment_status = PaymentStatus.CANCELLED

 def pay(self) -> None:
 if self._payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("Order is already paid.")
 self._payment_status = PaymentStatus.PAID

@dataclass
class OrderInformationHidingWithoutEncapsulation:
 """The status variable is public again (so there's no boundary),
 but we don't know what the type is - that information is hidden. I know, it's a bit
 of a contrived example - you wouldn't ever do this. But at least it shows that
 it's possible."""

 payment_status: Any = None

 def is_paid(self) -> bool:
 return self.payment_status == PaymentStatus.PAID

 def is_cancelled(self) -> bool:
 return self.payment_status == PaymentStatus.CANCELLED

 def cancel(self) -> None:
 if self.payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("You can't cancel an already paid order.")

 self.payment_status = PaymentStatus.CANCELLED

 def pay(self) -> None:
 if self.payment_status == PaymentStatus.PAID:
 raise PaymentStatusError("Order is already paid.")
 self.payment_status = PaymentStatus.PAID

def main() -> None:
 test = OrderInformationHidingWithoutEncapsulation()
 test.pay()
 print("Is paid: ", test.is_paid())

if __name__ == "__main__":
 main()

Abstraction

Abstraction is used to hide something too, but in a higher degree (class, module). Clients who
use an abstract class (or interface) do not care about what it was, they just need to know what it
can do.

Abstract class contains one or more abstract methods, and is considered a blueprint for other
classes. It allows you to create a set of methods that must be created within any child classes built
from the abstract class.

Abstract method is a method that has a declaration but does not have an implementation.

An abstract class is a class that is declared abstract — it may or may not
include abstract methods.
Abstract classes cannot be instantiated, but they can be subclassed. This is the
differentiation from Inheritance
When an abstract class is subclassed, the subclass usually provides implementations for
all of the abstract methods in its parent class

Be aware, Abstraction reduces code repetition but increases coupling.

https://www.geeksforgeeks.org/abstract-classes-in-python/

Working on Python Abstract classes
Here, This code defines an abstract base class called “Animal” using the ABC (Abstract Base Class)
module in Python. The “Animal” class has a non-abstract method called “move” that does not have
any implementation. There are four subclasses of “Animal” defined: “Human,” “Snake,” “Dog,” and
“Lion.” Each of these subclasses overrides the “move” method and provides its own
implementation by printing a specific movement characteristic.

Concrete classes contain only concrete (normal) methods whereas abstract classes may contain
both concrete methods and abstract methods.

Prereq: Inheritance

abstract base class work
from abc import ABC, abstractmethod

https://www.geeksforgeeks.org/python-classes-and-objects/
https://www.geeksforgeeks.org/abstract-classes-in-python/

Concrete Methods in Abstract Base Classes (Super)
Concrete classes contain only concrete (normal) methods whereas abstract classes may contain
both concrete methods and abstract methods.

The concrete class provides an implementation of abstract methods, the abstract base class can
also provide an implementation by invoking the methods via super(). Let look over the example to
invoke the method using super():

class Animal(ABC):

 def move(self):
 pass

class Human(Animal):

 def move(self):
 print("I can walk and run")

class Snake(Animal):

 def move(self):
 print("I can crawl")

class Dog(Animal):

 def move(self):
 print("I can bark")

class Lion(Animal):

 def move(self):
 print("I can roar")

Driver code
R = Human()
R.move()

K = Snake()
K.move()

R = Dog()
R.move()

K = Lion()
K.move()

Python program invoking a
method using super()

Abstract Property
- use the decorator to prevent users from calling abstract method

from abc import ABC

class R(ABC):
 def rk(self):
 print("Abstract Base Class")

class K(R):
 def rk(self):
 super().rk()
 print("subclass ")

Driver code
r = K()
r.rk()

Abstract Base Class
subclass

Python program showing
abstract properties

import abc
from abc import ABC, abstractmethod

class parent(ABC):
 @abc.abstractproperty
 def geeks(self):
 return "parent class"
class child(parent):

 @property
 def geeks(self):
 return "child class"

try:
 r =parent()
 print(r.geeks)
except Exception as err:
 print (err)

r = child()
print (r.geeks)

Protocol vs ABC

Can't instantiate abstract class parent with abstract methods geeks
child class

Inheritance

PRO: Promotes code reuse and establishes relationships between classes.
CON: Increases Coupling

Inheritance is based on a hierarchical relationship between classes, where a derived class (also
known as a subclass or child class) inherits the characteristics of a base class (also known as a
superclass or parent class). The derived class extends the functionality of the base class by adding
new features or overriding existing ones.

The key idea behind inheritance is that the derived class inherits all the attributes (data members)
and behaviors (methods) of the base class, and it can also introduce its own specific attributes and
behaviors. This allows for creating a hierarchy of classes with increasing specialization.

Template

Python Code:

Inheritance is a mechanism that allows a class to inherit properties and
behaviors from another class. “

class parent_class:
body of parent class

class child_class(parent_class):
body of child class

class Car: #parent class

 def __init__(self, name, mileage):
 self.name = name
 self.mileage = mileage

 def description(self):
 return f"The {self.name} car gives the mileage of {self.mileage}km/l"

class BMW(Car): #child class
 pass

We can check the base or parent class of any class using a built-in class attribute __bases__

Inheritance in Object Oriented Programming - Print ClassImage not found or type unknown

As we can see here, the base class of both sub-classes is Car. Now, let’s see what happens when
using __base__ with the parent class Car:

Inheritance in Object Oriented Programming - Print sub-classImage not found or type unknown

Whenever we create a new class in Python 3.x, it is inherited from a built-in basic class called
Object. In other words, the Object class is the root of all classes.

Forms of Inheritance
There are broadly five forms of inheritance in oops based on the involvement of parent and child
classes.

Single Inheritance
This is a form of inheritance in which a class inherits only one parent class. This is the simple form
of inheritance and hence, is also referred to as simple inheritance.

class Audi(Car): #child class
 def audi_desc(self):
 return "This is the description method of class Audi."
obj1 = BMW("BMW 7-series",39.53)
print(obj1.description())

obj2 = Audi("Audi A8 L",14)
print(obj2.description())
print(obj2.audi_desc())

print(BMW.__bases__, Audi.__bases__)

print(Car.__bases__)Output:

class Parent:
 def f1(self):
 print("Function of parent class.")

Output:

Inheritance in Object Oriented Programming - Single InheritanceImage not found or type unknown

Here oject1 is an instantiated object of class Child, which inherits the parent class ‘Parent’.

Multiple Inheritance

Multiple inheritances is when a class inherits more than one parent class. The child class, after
inheriting properties from various parent classes, has access to all of its objects.

One of the main problems with multiple inheritance is the diamond problem. This occurs when a
class inherits from two classes that both inherit from a third class. In this case, it is not clear which
implementation of the method from the third class should be used.

When a class inherits from multiple classes, it can be difficult to track which methods and
attributes are inherited from which class.

class Child(Parent):
 def f2(self):
 print("Function of child class.")

object1 = Child()
object1.f1()
object1.f2()

Avoid using multiple inheritance in Python. If you need to reuse code from multiple classes,
you can use composition.

class Parent_1:
 def f1(self):
 print("Function of parent_1 class.")

class Parent_2:
 def f2(self):
 print("Function of parent_2 class.")

class Parent_3:
 def f3(self):
 print("function of parent_3 class.")

Output:

Inheritance in Object Oriented Programming - Multiple InheritanceImage not found or type unknown

Here we have one Child class that inherits the properties of three-parent classes Parent_1,
Parent_2, and Parent_3. All the classes have different functions, and all of the functions are called
using the object of the Child class.

But suppose a child class inherits two classes having the same function:

Here, the classes Parent_1 and Parent_2 have the same class methods, f1(). Now, when we create
a new object of the child class and call f1() from it since the child class is inheriting both parent
classes, what do you think should happen?

Output:

class Child(Parent_1, Parent_2, Parent_3):
 def f4(self):
 print("Function of child class.")

object_1 = Child()
object_1.f1()
object_1.f2()
object_1.f3()
object_1.f4()

class Parent_1:
 def f1(self):
 print("Function of parent_1 class.")

class Parent_2:
 def f1(self):
 print("Function of parent_2 class.")

class Child(Parent_1, Parent_2):
 def f2(self):
 print("Function of child class.")

obj = Child()
obj.f1()

Inheritance in Object Oriented ProgrammingImage not found or type unknown

So in the above example, why was the function f1() of the class Parent_2 not inherited?

In multiple inheritances, the child class first searches for the method in its own class. If not found,
then it searches in the parent classes depth_first and left-right order. Since this was an easy
example with just two parent classes, we can clearly see that class Parent_1 was inherited first, so
the child class will search the method in Parent_1 class before searching in class Parent_2.

But for complicated inheritance oops problems, it gets tough to identify the order. So the actual
way of doing this is called Method Resolution Order (MRO) in Python. We can find the MRO of
any class using the attribute __mro__.

Output:

Inheritance in Object Oriented Programming - MROImage not found or type unknown

This tells that the Child class first visited the class Parent_1 and then Parent_2, so the f1() method
of Parent_1 will be called.

Let’s take a bit complicated example in Python:

Child.__mro__

class Parent_1:
pass

class Parent_2:
pass

class Parent_3:
pass

class Child_1(Parent_1,Parent_2):
pass

class Child_2(Parent_2,Parent_3):
pass

class Child_3(Child_1,Child_2,Parent_3):
pass

Here, the class Child_1 inherits two classes – Parent_1 and Parent_2. The class Child_2 is also
inheriting two classes – Parent_2 and Parent_3. Another class, Child_3, is inheriting three classes –
Child_1, Child_2, and Parent_3.

Now, just by looking at this inheritance, it is quite hard to determine the Method Resolution Order
for class Child_3. So here is the actual use of __mro__.

Output:

Image not found or type unknown

We can see that, first, the interpreter searches Child_3, then Child_1, followed by Parent_1, Child_2,
Parent_2, and Parent_3, respectively.

Multi-level Inheritance
For example, a class_1 is inherited by a class_2, and this class_2 also gets inherited by class_3, and
this process goes on. This is known as multi-level inheritance oops. Let’s understand with an
example:

Child_3.__mro__

class Parent:
 def f1(self):
 print("Function of parent class.")

class Child_1(Parent):
 def f2(self):
 print("Function of child_1 class.")

class Child_2(Child_1):
 def f3(self):
 print("Function of child_2 class.")

obj_1 = Child_1()
obj_2 = Child_2()

obj_1.f1()
obj_1.f2()

Output:

Image not found or type unknown

Here, the class Child_1 inherits the Parent class, and the class Child_2 inherits the class Child_1. In
this Child_1 has access to functions f1() and f2() whereas Child_2 has access to functions f1(), f2()
and f3(). If we try to access the function f3() using the object of class Class_1, then an error will
occur stating:

‘Child_1’ object has no attribute ‘f3’.

Image not found or type unknown

Hierarchical Inheritance
In this, various Child classes inherit a single Parent class. The example given in the introduction of
the inheritance is an example of Hierarchical inheritance since classes BMW and Audi inherit class
Car.

For simplicity, let’s look at another example:

print("\n")
obj_2.f1()
obj_2.f2()
obj_2.f3()

obj_1.f3()

class Parent:
deff1(self):
print("Function of parent class.")

class Child_1(Parent):
deff2(self):
print("Function of child_1 class.")

class Child_2(Parent):

Output:

Image not found or type unknown

Here two child classes inherit the same parent class. The class Child_1 has access to functions f1()
of the parent class and function f2() of itself. Whereas the class Child_2 has access to functions f1()
of the parent class and function f3() of itself.

Hybrid Inheritance
When there is a combination of more than one form of inheritance, it is known as hybrid
inheritance. It will be more clear after this example:

deff3(self):
print("Function of child_2 class.")

obj_1 = Child_1()
obj_2 = Child_2()

obj_1.f1()
obj_1.f2()

print('\n')
obj_2.f1()
obj_2.f3()

class Parent:
 def f1(self):
 print("Function of parent class.")

class Child_1(Parent):
 def f2(self):
 print("Function of child_1 class.")

class Child_2(Parent):
 def f3(self):
 print("Function of child_2 class.")

class Child_3(Child_1, Child_2):

Output:

Image not found or type unknown

In this example, two classes, ‘Child_1′ and ‘Child_2’, are derived from the base class ‘Parent’ using
hierarchical inheritance. Another class, ‘Child_3’, is derived from classes ‘Child_1’ and ‘Child_2’
using multiple inheritances. The class ‘Child_3’ is now derived using hybrid inheritance.

Method Overriding in Inheritance
in Python

The concept of overriding is very important in inheritance oops. It gives the special ability to the
child/subclasses to provide specific implementation to a method that is already present in their
parent classes.

 def f4(self):
 print("Function of child_3 class.")

obj = Child_3()
obj.f1()
obj.f2()
obj.f3()
obj.f4()

We do this so we can have our own methods without modifying the base class. If we modify
the base class, then that could lead to other problems if other users are expecting certain
functionality from the said base class

class Parent:
 def f1(self):
 print("Function of Parent class.")

class Child(Parent):
 def f1(self):
 print("Function of Child class.")

Output:

Image not found or type unknown

Here the function f1() of the child class has overridden the function f1() of the parent class.
Whenever the object of the child class invokes f1(), the function of the child class gets executed.
However, the object of the parent class can invoke the function f1() of the parent class.

obj = Child()
obj.f1()

obj_2 = Parent()
obj_2.f1()

Output:

Image not found or type unknown

Super() Function in Python
The super() function in Python returns a proxy object that references the parent class using the
super keyword. This super() keyword is basically useful in accessing the overridden methods of
the parent class.

The official documentation of the super() function sites two main uses of super():

In a class hierarchy with single inheritance oops, super helps to refer to the parent
classes without naming them explicitly, thus making the code more maintainable.

For example:

class Parent:
 def f1(self):
 print("Function of Parent class.")

https://docs.python.org/3/library/functions.html#super

Output:

Image not found or type unknown

Here, with the help of super().f1(), the f1() method of the superclass of the child class, i.e., the
parent class, has been called without explicitly naming it.

One thing to note here is that the super() class can accept two parameters- the first is the name of
the subclass, and the second is an object that is an instance of that subclass. Let’s see how:

Output:

Image not found or type unknown

The first parameter refers to the subclass Child, while the second parameter refers to the object of
Child, which, in this case, is self. You can see the output after using super(), and super(Child, self)

class Child(Parent):
 def f1(self):
 super().f1()
 print("Function of Child class.")

obj = Child()
obj.f1()

class Parent:
 def f1(self):
 print("Function of Parent class.")

class Child(Parent):
 def f1(self):
 super(Child, self).f1()
 print("Function of Child class.")

obj = Child()
obj.f1()

is the same because, in Python 3, super(Child, self) is equivalent to self().

Now let’s see one more example using the __init__ function.

Output:

Image not found or type unknown

What we have done here is that we called the __init__ function of the parent class (inside the child
class) using super().__init__(ChildName). And as the __init__ method of the parent class requires
one argument, it has been passed as “ChildName”. So after creating the object of the child class,
first, the __init__ function of the child class got executed, and after that, the __init__ function of the
parent class.

The second use case is to support multiple cooperative inheritances in a dynamic
execution environment.

class Parent(object):
 def__init__(self, ParentName):
 print(ParentName, 'is derived from another class.')

class Child(Parent):
 def__init__(self, ChildName):
 print(name,'is a sub-class.')
 super().__init__(ChildName)

obj = Child('Child')

class First():
 def __init__(self):
 print("first")
 super().__init__()

class Second():
 def __init__(self):
 print("second")
 super().__init__()

class Third(Second, First):

Output:

Image not found or type unknown

The super() call finds the next method in the MRO at each step, which is why First and Second have
to have it, too; otherwise, execution stops at the end of first().__init__.

Note that the super-class of both First and Second is Object.

Let’s find the MRO of Third() as well.

Output:

Image not found or type unknown

The order is Third > Second > First, and the same is the order of our output.

 def __init__(self):
 print("third")
 super().__init__()

obj = Third()

Third.__mro__

Polymorphism
Class Polymorphism
Polymorphism is often used in Class methods, where we can have multiple classes with the same
method name.

For example, say we have three classes: Car , Boat , and Plane , and they all have a method called
move() :

Different classes with the same method:

class Car:
 def __init__(self, brand, model):
 self.brand = brand
 self.model = model

 def move(self):
 print("Drive!")

class Boat:
 def __init__(self, brand, model):
 self.brand = brand
 self.model = model

 def move(self):
 print("Sail!")

class Plane:
 def __init__(self, brand, model):
 self.brand = brand
 self.model = model

 def move(self):
 print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car class
boat1 = Boat("Ibiza", "Touring 20") #Create a Boat class

Inheritance Class Polymorphism
What about classes with child classes with the same name? Can we use polymorphism there?

Yes. If we use the example above and make a parent class called Vehicle , and make Car , Boat ,
Plane child classes of Vehicle , the child classes inherits the Vehicle methods, but can override
them:

plane1 = Plane("Boeing", "747") #Create a Plane class

for x in (car1, boat1, plane1):
 x.move()

class Vehicle:
 def __init__(self, brand, model):
 self.brand = brand
 self.model = model

 def move(self):
 print("Move!")

class Car(Vehicle):
 pass

class Boat(Vehicle):
 def move(self):
 print("Sail!")

class Plane(Vehicle):
 def move(self):
 print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car object
boat1 = Boat("Ibiza", "Touring 20") #Create a Boat object
plane1 = Plane("Boeing", "747") #Create a Plane object

for x in (car1, boat1, plane1):
 print(x.brand)
 print(x.model)
 x.move()

Built-in Methods
Instance Method vs Static Method
Instance Methods (normal methods without declaring @) specifies with that particular declared
instance. For ex. a unique event is specific to a specific calendar instance, and should not exist on
other calendar instances.

Static Method doesn't care about any particular instance. For ex, a weekend on a calendar applies
to all calendars since it is universally agreed upon how calendars work, regardless of instance

Also look into Class Method if need to consider inheritance.

Dataclasses
Without using Dataclass,

If you print, it will be the memory address where the object resides.
 To print a string, will have to modify the _str_ dunder method

A new object with identical information will be a new object

class Calendar:
 def __init__(self):
 self.events = []

 def add_event(self, event):
 self.events.append(event)

 @staticmethod
 def is_weekend(dt):
 pass

class Person:
 def __init__(self, name, job, age):
 self.name = name
 self.job = job
 self.age = age

person1 = Person("Geralt", "Witcher", 30)

With Dataclass:

Print string information instead of object, unless using id()
A new object will still be a new object, but if information is identical it will it will return
True
If forgot to write @dataclass...

class variables instead of instance variables

person2 = Person("Yennefer", "Sorceress", 25)
person3 = Person("Yennefer", "Sorceress", 25)

print(id(person2))
print(id(person3))
print(person1)

print(person3 == person2)

"""
OUTPUT:
140244722433808
140244722433712
<__main__.Person object at 0x7f8d44dcbfd0>
False
"""

from dataclasses import dataclass, field

@dataclass(order=True,frozen=False)
class Person:
 sort_index: int = field(init=False, repr=False)
 name: str
 job: str
 age: int
 strength: int = 100

 def __post_init__(self):
 object.__setattr__(self, 'sort_index', self.strength)

 def __str__(self):

https://www.youtube.com/watch?v=CvQ7e6yUtnw&t=389s

 return f'{self.name}, {self.job} ({self.age})'

person1 = Person("Geralt", "Witcher", 30, 99)
person2 = Person("Yennefer", "Sorceress", 25)
person3 = Person("Yennefer", "Sorceress", 25)

print(person1)
print(id(person2))
print(id(person3))
print(person3 == person2)
print(person1 > person2)

"""
Geralt, Witcher (30)
140120080908048
140120080907856
True
False
"""

https://www.youtube.com/watch?v=CvQ7e6yUtnw&t=389s

Class Creation: Getter/Setter
vs Property
Getter and Setter Pattern comes from OOP languages such as C++ and Java in order to adhere to

Encapsulation
the bundling of data/attributes and methods.
restricting access to implementation details and violating state invariants

In Python it is considered unpythonic. Instead, use @property decorator instead

Class without Getter and Setter
Basic method of setting and getting attributes in Python
If this class had no methods, and only an __init__, then this would be fine.
This has no Encapsulation because it directly accesses the attributes

class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

Create a new object
human = Celsius()

Set the temperature
human.temperature = 37

Get the temperature attribute
print(human.temperature)

Getter and Setter Pattern
Class Attributes...

are variables where you can access through the instance, class, or both.
holds an internal state.
Two ways to access class attributes:
1. Directly (breaks encapsulation)

If accessed directly, they become part of Public API
Only use if sure that no behavior (methods) will ever be attached to the
variables (@dataclass?)
Changing implementation will be problematic:

Converting stored attribute -> computed attribute. Want to be able
to store attributes instead of recomputing each time

No internal implementation
2. Methods (ideal)

Two methods to respect encapsulation
Getter: Allows Access
Setter: Allows Setting or Mutation

Implementation
1. Making attributes Non-public

use underscore in variable name (_name)
2. Writing Getter and Setter Methods for each attribute

In a class, __init__ is the attributes (variables)

Get the to_fahrenheit method
print(human.to_fahrenheit())

>> 37
>> 98.60000000000001

Making Getters and Setter methods
PRO: Adheres to Encapsulation since get/set methods is used to change the attributes instead of direct access
PRO: Adheres to a faux Information Hiding since converting temperature to _temperature, but no
private/protected vars in Python
CON: Has more code to change

class Celsius:
 def __init__(self, temperature=0):
 self.set_temperature(temperature)

Property Class

 def to_fahrenheit(self):
 return (self.get_temperature() * 1.8) + 32

 # getter method
 def get_temperature(self):
 return self._temperature

 # setter method
 def set_temperature(self, value):
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible.")
 self._temperature = value

Create a new object, set_temperature() internally called by __init__
human = Celsius(37)

Get the temperature attribute via a getter
print(human.get_temperature())

Get the to_fahrenheit method, get_temperature() called by the method itself
print(human.to_fahrenheit())

new constraint implementation
human.set_temperature(-300)

Get the to_fahreheit method
print(human.to_fahrenheit())

>> 37
>> 98.60000000000001
>> Traceback (most recent call last):
>> File "<string>", line 30, in <module>
>> File "<string>", line 16, in set_temperature
>> ValueError: Temperature below -273.15 is not possible.

using property class
class Celsius:

The reason is that when an object is created, the __init__() method gets called. This method has the
line self.temperature = temperature . This expression automatically calls set_temperature() .

Similarly, any access like c.temperature automatically calls get_temperature() . This is what property
does.

By using property , we can see that no modification is required in the implementation of the value
constraint. Thus, our implementation is backward compatible.

 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

 # getter
 def get_temperature(self):
 print("Getting value...")
 return self._temperature

 # setter
 def set_temperature(self, value):
 print("Setting value...")
 if value < -273.15:
 raise ValueError("Temperature below -273.15 is not possible")
 self._temperature = value

 # creating a property object
 temperature = property(get_temperature, set_temperature)

human = Celsius(37)

print(human.temperature)

print(human.to_fahrenheit())

human.temperature = -300

The @property Decorator
In Python, property() is a built-in function that creates and returns a property object. The syntax of
this function is:

Here,

fget is function to get value of the attribute
fset is function to set value of the attribute
fdel is function to delete the attribute
doc is a string (like a comment)

As seen from the implementation, these function arguments are optional.

A property object has three methods, getter() , setter() , and deleter() to specify fget , fset and fdel
 at a later point. This means, the line:

can be broken down as:

These two pieces of code are equivalent.

Programmers familiar with Python Decorators can recognize that the above construct can be
implemented as decorators.

We can even not define the names get_temperature and set_temperature as they are unnecessary
and pollute the class namespace.

For this, we reuse the temperature name while defining our getter and setter functions. Let's look at
how to implement this as a decorator:

property(fget=None, fset=None, fdel=None, doc=None)

temperature = property(get_temperature,set_temperature)

make empty property
temperature = property()

assign fget
temperature = temperature.getter(get_temperature)

assign fset
temperature = temperature.setter(set_temperature)

https://www.programiz.com/python-programming/methods/built-in/property
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/decorator
https://www.programiz.com/python-programming/namespace

Using @property decorator
class Celsius:
 def __init__(self, temperature=0):
 self.temperature = temperature

 def to_fahrenheit(self):
 return (self.temperature * 1.8) + 32

 @property
 def temperature(self):
 print("Getting value...")
 return self._temperature

 @temperature.setter
 def temperature(self, value):
 print("Setting value...")
 if value < -273.15:
 raise ValueError("Temperature below -273 is not possible")
 self._temperature = value

create an object
human = Celsius(37)

print(human.temperature)

print(human.to_fahrenheit())

coldest_thing = Celsius(-300)

>>Setting value...
>>Getting value...
>>37
>>Getting value...
>>98.60000000000001.
>>Setting value...
>>Traceback (most recent call last):
>> File "", line 29, in
>> File "", line 4, in __init__
>> File "", line 18, in temperature

>>ValueError: Temperature below -273 is not possible

