Object Oriented
Design Interviews

Model a real world problem with Object Oriented Design techniqgues and concepts. Often called Low
Level System Design

Good Engineering Principles

Qand A

Design a Parking Lot

Concepts

Good Engineering Principles

General Engineering Principles

DRY (Don't Repeat Yourself):
o Avoid duplication of code

o Abstract common functionalities into reusable components or functions.
o Emphasis on modularity and maintainability.

KISS (Keep It Simple, Stupid):
o Complex solutions should be avoided in favor of simpler, more straightforward ones
whenever possible.

YAGNI (You Aren't Gonna Need It):'
o Only implement features that are necessary based on current requirements, and do
not "over engineer"

Separation of Concerns (SoC):

o Divide the software into distinct sections, with each section addressing a separate
concern or responsibility.

o Promotes modularity, maintainability, reusability, flexibility, and loose coupling
between components

Single Source of Truth (SSOT):
o Store each piece of information (like config files) in the system in a single location.
o Reduces the risk of data inconsistencies.

Fail-Fast Principle:

o Identify and report errors as soon as they occur rather than allowing them to
propagate and potentially cause more significant issues later on.

o Helps in diagnosing and fixing problems quickly.

Dependency Injection Design Pattern

44 If a class uses an object of a certain type, we are NOT also responsible for
creating the object.

Providing the objects that an object needs (its dependencies) instead of having it
construct them itself.

Dependency injection (Inversion of Control Technique) is a principle that helps to decrease coupling
and increase cohesion.

Infabnag es/copling-eobesion.png
What is coupling and cohesion?

Coupling and cohesion are about how tough the components are tied.

e High coupling. If the coupling is high it’s like using superglue or welding. No easy way to
disassemble.

e High cohesion. High cohesion is like using screws. Quite easy to disassemble and re-
assemble in a different way. It is an opposite to high coupling.

Cohesion often correlates with coupling. Higher cohesion usually leads to lower coupling and vice
versa.

Low coupling brings flexibility. Your code becomes easier to change and test.

o Dependency:

o When an object type and its class is coupled (has-a relationship). Ex.

o Class could depend on another class could it has an attribute of that type
o Object of that type is passed as a parameter to a method
o Class inherits from another class, the strongest dependency since it uses

o Flexibility. The components are loosely coupled. You can easily extend or
change the functionality of a system by combining the components in a
different way. You even can do it on the fly.

o Testability. Testing is easier because you can easily inject mocks instead of
real objects that use API or database, etc.

o Clearness and maintainability. Dependency injection helps you reveal the
dependencies. Implicit becomes explicit. And “Explicit is better than implicit”
(PEP 20 - The Zen of Python). You have all the components and dependencies
defined explicitly in a container. This provides an overview and control of the
application structure. It is easier to understand and change it.

Before:

import os

class ApiClient:

def _init_ (self) -> None:
self.api_key = os.getenv("API_KEY") # <-- dependency
self.timeout = int(os.getenv("TIMEOUT")) # <-- dependency

class Service:

def _init_ (self) -> None:

self.api_client = ApiClient() # <-- dependency

def main() -> None:

service = Service() # <-- dependency

if _name__ =="_main_"

main()

After:

import os

class ApiClient:

def __init__(self, api_key: str, timeout: int) -> None:

self.api_key = api_key # <-- dependency is injected

self.timeout = timeout # <-- dependency is injected

class Service:

def __init_ (self, api_client: ApiClient) -> None:

self.api_client = api_client # <-- dependency is injected

def main(service: Service) -> None: # <-- dependency is injected

if _name__ =="_ main_"
main(
service=Service(
api_client=ApiClient(
api_key=os.getenv("API_KEY"),
timeout=int(os.getenv("TIMEOUT")),

ApiClient is decoupled from knowing where the options come from. You can read a key and a
timeout from a configuration file or even get them from a database.

Service is decoupled from the ApiClient. It does not create it anymore. You can provide a stub or other
compatible object.

Function main() is decoupled from Service. It receives it as an argument.

Flexibility comes with a price.
Now you need to assemble and inject the objects like this:

main(
service=Service(
api_client=ApiClient(
api_key=os.getenv("API_KEY"),
timeout=int(os.getenv("TIMEOUT")),

The assembly code might get duplicated and it'll become harder to change the application
structure.

Law of Demeter / Principle of Least
Knowledge:

e Module should have limited knowledge about other modules.

e Encourages encapsulation and loose coupling by restricting the interaction between
objects.

e Method in an object should only call:

o

Itself

Its parameters

Object it creates

Its direct component objects

o

o

o

"~Acall to C is discouraged. -~

-~
- -
- o -
-
--'- --"".

Violates Law of Demeter due to nesting:

data = {
"containers": [
{"scoops": [{"flavor": "chocolate"}, {"flavor": "vanilla"}]},

{"scoops": [{"flavor": "strawberry"}, {"flavor": "mint"}]}

flavor = data["containers"][0]["scoops"][0]["flavor"]
Fix:

1. Create a class that represents the container structure. And,
2. Provide methods to access our inner data.

class Scoop:
def _init_ (self, flavor:str):

self.flavor = flavor

def get_flavor(self):

http://159.223.197.234/uploads/images/gallery/2024-03/6Jwimage.png

return self.flavor

class Container:
def _init_ (self):

self.scoops =[]

def add_scoop(self,flavor:str):

self.scoops.append(Scoop(flavor))

def get_flavor_of scoop(self, index:int):

return self.scoops[index].get _flavor()
data = Container()
data.add_scoop("chocolate")

data.add_scoop("vanilla")

flavor = data.get_flavor_of scoop(0)

Solid Principles

Single Responsibility Principle (SRP):

Single Responsibility Principle

Just because you can doesn't mean you should.

e A class should have only one reason to change.
e The following handles both read/write of files and encryption, which violates SRP

http://159.223.197.234/uploads/images/gallery/2024-03/single-responsibility-principle.jpg

class FileManager:
def _init_ (self, file_path):
self.file_path = file_path

def read_file(self):

pass

def write_file(self, data):

pass

def encrypt_data(self, data):

pass

def decrypt_data(self, data):

pass

e In this refactored version, the "FileManager class now focuses solely on file management
operations.

class FileManager
def _init_ (self, file_path):
self.file_path = file_path

def read_file(self):

pass
def write_file(self, data):

pass

class DataEncryptor:
def encrypt_data(self, data):

pass

def decrypt_data(self, data):

pass

Open/Closed Principle (OCP):

WA

Open-Closed Principle

Open-chest surgery isn't needed when putting on a coat.

Software entities (classes, modules, functions, etc.) should be open for extension but closed for
modification.

The function animal_sound does not conform because it cannot be closed against new kinds of
animals. If we add a new animal, Snake, We have to modify the animal_sound function. For every
new animal, a new logic is added to the animal_sound function.

When your application grows in complexity, the if statement would be repeated in the
animal_sound function each time a new animal is added, all over the application. We want to
decrease amount of if else statements.

class Animal:
def _init_ (self, name: str):

self.name = name

def get_name(self) -> str:

pass

animals = [
Animal('lion'),

Animal('mouse’)

def animal_sound(animals: list):
for animal in animals:
if animal.name == "lion":

print(‘'roar")

http://159.223.197.234/uploads/images/gallery/2024-03/openclosed-principle-thumb.jpg

elif animal.name == 'mouse":

print(‘squeak’)

animal_sound(animals):

The Animal class has been enhanced with the addition of the make_sound method. Each animal
class extends the Animal class and provides its own implementation of the make_sound method,
defining how it produces its unique sound.

In the animal_sound function, we iterate through the array of animals and simply invoke their
respective make_sound methods. The animal_sound function remains unchanged even when
new animals are introduced. We only need to include the new animal in the animal array.

This adherence to the Open-Closed Principle ensures that the code is extensible without requiring
modifications to existing code.

class Animal:
def __init_ (self, name: str):

self.name = name

def get_name(self) -> str:

pass

def make_sound(self):

pass

class Lion(Animal):
def make_sound(self):

return 'roar’

class Mouse(Animal):
def make_sound(self):

return 'squeak’

class Snake(Animal):
def make_sound(self):

return 'hiss'

def animal_sound(animals: list):

for animal in animals:

print(animal.make_sound())

animal_sound(animals):

Liskov Substitution Principle:

Liskov Substitution Principle

If it looks like a duck and quacks like a duck but needs batteries,
you probably have the wrong abstraction.

Make your subclasses behave like their base classes without breaking anyone’s expectations when
they call the same methods.

This implementation violates the Liskov Substitution Principle because you can't seamlessly replace
instances of Rectangle with their Square counterparts.

Imagine someone expects a rectangle object in their code. Naturally, they would assume that it
exhibits the behavior of a rectangle, including separate width and height attributes.
Unfortunately, the Square class in your codebase violates this assumption by altering the expected
behavior defined by the object's interface.

To apply the Liskov Substitution Principle, introduce a base Shape class and make both Rectangle
and Square inherit from it:

class Rectangle
def _init_ (self, width, height):
self.width = width
self.height = height

def calculate_area(self):

return self.width * self.height:

class Square(Rectangle)
def _init_ (self, side):

super().__init_ (side, side)

http://159.223.197.234/uploads/images/gallery/2024-03/liskov-substitution-principle-thumb.jpg

def _setattr_ (self, key, value):
super().__setattr_ (key, value)
if key in ("width", "height"):
self.__dict_ ["width"] = value

self. _dict_["height"] = value:

Introducing a common base class (Shape), ensures that objects of different subclasses can be
seamlessly interchanged wherever the superclass is expected. Both Rectangle and Square are now
siblings, each with their own set of attributes, initializer methods, and potentially more separate
behaviors. The only shared aspect between them is the ability to calculate their respective areas

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def calculate_area(self):

pass

class Rectangle(Shape):
def _init_ (self, width, height):
self.width = width
self.height = height

def calculate_area(self):

return self.width * self.height

class Square(Shape):
def __init_ (self, side):

self.side = side

def calculate_area(self):

return self.side ** 2d

With this implementation in place, you can use the Shape type interchangeably with its Square
and Rectangle subtypes when you only care about their common behavior:

from shapes_Isp import Rectangle, Square

def get_total_area(shapes):

return sum(shape.calculate_area() for shape in shapes)

get _total_area([Rectangle(10, 5), Square(5)])
75

Three Violation of LSK Principle:

1. Violating the Contract: Derived classes should not violate the contracts defined by the base
class. If a derived class modifies or ignores the requirements specified by the base class, it can
lead to inconsistencies and unexpected behaviors.

Every Bird subclass should be able to use the methods of the abstract Bird class.

class Bird:
def fly(self):

pass

class Ostrich(Bird):
def fly(self):

raise NotimplementedError("Ostriches cannot fly!")

bird = Bird()
bird.fly() # Output: (no implementation)

ostrich = Ostrich()

ostrich.fly() # Raises NotimplementedError

A better solution is to further abstract the method from "fly" to "move," allowing the Ostrich to run
when move method is called, and the other birds (ducks) can fly

2. Overriding Essential Behavior: Overriding crucial methods in a way that changes the
fundamental behavior defined by the base class can break the LSP. Derived classes should extend
or specialize the behavior rather than completely altering it.

class Vehicle:
def start_engine(self):

print("Engine started.")
class ElectricVehicle(Vehicle):
def start_engine(self):

print("Engine cannot be started for an electric vehicle.")

vehicle = Vehicle()

vehicle.start_engine() # Output: Engine started.

electric_vehicle = ElectricVehicle()

electric_vehicle.start_engine() # Output: Engine cannot be started for an electric vehicle.

The solutions is to change method name from "start _engine" to "start," since electric and gas
vehicles both have to start.

3. Tight Coupling with Implementation Details: Relying heavily on implementation details of
derived classes in client code can lead to tight coupling and hinder the flexibility of the LSP. Aim for
loose coupling and focus on interacting with objects through their defined interfaces.

class DatabaseConnector:
def connect(self):

pass

class MySQLConnector(DatabaseConnector):
def connect(self):

print("Connecting to MySQL database...")
class PostgreSQLConnector(DatabaseConnector):
def connect(self):

print("Connecting to PostgreSQL database...")

Tight coupling with concrete class instantiation

connector = MySQLConnector() # Specific to MySQL

connector.connect() # Output: Connecting to MySQL database...

In this example, the client code tightly couples with the concrete class MySQLConnector when
instantiating the connector object. This direct dependency on the specific class limits the flexibility
to switch to other database connectors, such as PostgreSQLConnector . To follow the Liskov
Substitution Principle, it is better to interact with objects through their common base class interface
(DatabaseConnector in this case) and use polymorphism to instantiate objects based on runtime
configuration or user input. The following fixes the issue:

class DatabaseConnector:
def connect(self):

pass

class MySQLConnector(DatabaseConnector):
def connect(self):

print("Connecting to MySQL database...")

class PostgreSQLConnector(DatabaseConnector):
def connect(self):

print("Connecting to PostgreSQL database...")

Dependency injection with a generic database connector
def use_database_connector(connector):

connector.connect()

Usage example
if _name__ =="_ main_":
mysql_connector = MySQLConnector()

postgresql_connector = PostgreSQLConnector()

use_database_connector(mysql_connector) # Output: Connecting to MySQL database...

use_database_connector(postgresql_connector) # Output: Connecting to PostgreSQL database...

Interface Segregation Principle (ICP)

Interface Segregation Principle

You want me to plug this in where?

The Interface Segregation Principle revolves around the idea that clients should not be forced to
rely on methods they do not use. To achieve this, the principle suggests creating specific interfaces
or classes tailored to the needs of individual clients.

In this example, the base class Printer defines an interface that its subclasses are required to
implement. However, the OldPrinter subclass doesn't utilize the fax() and scan() methods
because it lacks support for these functionalities.

http://159.223.197.234/uploads/images/gallery/2024-03/interface-segregation-principle-thumb.jpg

Unfortunately, this design violates the ISP as it forces OldPrinter to expose an interface that it
neither implements nor requires.

from abc import ABC, abstractmetho

class Printer(ABC):
@abstractmethod
def print(self, document):

pass

@abstractmethod
def fax(self, document):

pass

@abstractmethod
def scan(self, document):

pass

class OldPrinter(Printer):
def print(self, document):

print(f"Printing {document} in black and white...")

def fax(self, document):

raise NotimplementedError("Fax functionality not supported")

def scan(self, document):

raise NotimplementedError("Scan functionality not supported")

class ModernPrinter(Printer):
def print(self, document):

print(f"Printing {document} in color...")

def fax(self, document):

print(f"Faxing {document}...")

def scan(self, document):

print(f"Scanning {document}...")d

In this revised design, the base classes—Printer, Fax, and Scanner—provide distinct interfaces,
each responsible for a single functionality. The OldPrinter class only inherits the Printer
interface, ensuring that it doesn't have any unused methods. On the other hand, the NewPrinter

class inherits from all the interfaces, incorporating the complete set of functionalities. This
segregation of the Printer interface enables the creation of various machines with different
combinations of functionalities, enhancing flexibility and extensibility.

from abc import ABC, abstractmetho

class Printer(ABC):
@abstractmethod
def print(self, document):

pass

class Fax(ABC):
@abstractmethod
def fax(self, document):

pass

class Scanner(ABC):
@abstractmethod
def scan(self, document):

pass

class OldPrinter(Printer):
def print(self, document):

print(f"Printing {document} in black and white...")
class NewPrinter(Printer, Fax, Scanner):
def print(self, document):

print(f"Printing {document} in color...")

def fax(self, document):

print(f"Faxing {document}...")

def scan(self, document):

print(f"Scanning {document}...")d

Dependency Inversion Principle (DIP)

Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

The Dependency Inversion Principle focuses on managing dependencies between classes. It states
that

e Dependencies should be based on abstractions rather than concrete implementations.
e Abstractions should not rely on implementation details; instead, details should depend on
abstractions.

Without dependency injection, there is no dependency inversion

class PaymentProcessor
def process_payment(self, payment):
if payment.method == 'credit_card":
self.charge_credit_card(payment)
elif payment.method == 'paypal':

self.process_paypal_payment(payment)

def charge_credit_card(self, payment):

Charge credit card

def process_paypal_payment(self, payment):

Process PayPal payment

In this updated code, we introduced the PaymentMethod abstract base class, which declares the
process_payment() method. The PaymentProcessor class now depends on the PaymentMethod
abstraction through its constructor, rather than directly handling the payment logic. The specific
payment methods, such as CreditCardPayment and PayPalPayment, implement the
PaymentMethod interface and provide their own implementation for the process_payment()
method.

http://159.223.197.234/uploads/images/gallery/2024-03/dependency-inversion-principle-thumb.jpg

By following this structure, the PaymentProcessor class is decoupled from the specific payment
methods, and it depends on the PaymentMethod abstraction. This design allows for greater
flexibility and easier extensibility, as new payment methods can be added by creating new classes
that implement the PaymentMethod interface without modifying the PaymentProcessor class.

from abc import ABC, abstractmethod

class PaymentMethod(ABC):
@abstractmethod
def process_payment(self, payment):

pass

class PaymentProcessor:
def _init_ (self, payment_method):

self.payment_method = payment_method

def process_payment(self, payment):

self.payment_method.process_payment(payment)

class CreditCardPayment(PaymentMethod):
def process_payment(self, payment):

Code to charge credit card

class PayPalPayment(PaymentMethod):
def process_payment(self, payment):

Code to process PayPal payment

Composition Over Inheritance:

Prefer composition (building objects by assembling smaller, reusable components) over inheritance
(creating new classes by extending existing ones). This approach leads to more flexible and
maintainable code.

e Inheritance reduces encapsulation: we want our classes and modules to be loosely
coupled to the rest of the codebase.
o A child class, instead, is strongly coupled to its parent. When a parent changes, the
change will ripple through all of its children and might break the codebase.
e Testability: Reduced encapsulation results in classes being harder to test.

Composition involves using other classes to build more complex classes, there is no parent/child
relationship exists in this case. Objects are composed of other objects, through a has-a

relationship, not a belongs-to relationship. This means that we can combine other objects to
reach the behavior we would like, thus avoid the subclasses explosion problem. In Python, we can
leverage a couple of mechanisms to achieve composition.

Use Inheritance sparingly. Abstract Base Class or Protocol are good examples of clean inheritance.

Make Classes Data-Oriented or Behavior-
Oriented

Use @dataclass for data-oriented classes, and consider just having a separate module with
functions for Behavior-Oriented classes

Q and A

Here are some questions that interviewers may ask to test your basic knowledge of object oriented
design principles.

What is a...

1. Class:
e A class is a fundamental building block in object-oriented programming.
e |t serves as a blueprint for defining objects in software, containing properties and
methods.
e OOP allows for one class to inherit from another, facilitating code reuse.
2. Properties and Methods:
e Properties are the attributes (nouns) of a class, defining characteristics like color,
size, etc.
e Methods are the behaviors (verbs) of a class, defining actions like fly(), eat(), etc.
3. Inheritance:
e Inheritance allows a child class to use the methods and properties of a parent class.
e Child classes inherit behavior from parent classes, facilitating code reuse and
promoting a hierarchical structure.
e For example, a Bird class may inherit methods like eat() and sleep() from a parent
Animal class, as birds are a type of animal.
o Hierarchy Building:

o Inheritance allows for the creation of a hierarchy of classes, mirroring
real-world relationships.

o It simulates how objects relate to each other through an IS A relationship.

o Understanding IS A Relationship:

o The goal of inheritance is not just to inherit methods but to adhere to the
IS A relationship rule.

o It ensures that subclasses represent specialized versions of their
superclass and are related in a meaningful way.

o Avoiding Poor Design:

o Inheritance should not be used indiscriminately for method reuse.

o For example, a Bird class should not inherit from a Vehicle class solely to
use the move() method. This violates the IS A relationship principle and
leads to poor design.

o Key Principle:

o The IS A relationship is crucial for forming class hierarchies and ensuring
proper code reuse where it makes sense.

o Well-designed applications leverage inheritance to promote code reuse in
a meaningful and logical manner.

10.

11.

12.

13.

Public vs. Private Methods/Properties:

e Public methods and properties are accessible from external classes, while private
methods and properties are only accessible within the class itself.

e Private members cannot be inherited by child classes.

e Inner nested classes within the same class definition have access to private
members.

. Class Constructor:

e A constructor is a method used to instantiate an instance of a class.

e It typically has the same name as the class and initializes specific properties.

e Overloaded constructors allow for multiple constructor definitions with different
parameters.

. Overloaded Methods:

e Overloaded methods have the same name but a different set of parameters.
e The order of parameters matters, and parameters must have different data types to
avoid compilation errors.

. Abstract Class:

e An abstract class cannot be instantiated but can be inherited.

e It contains abstract methods that must be implemented by its child classes.

e Abstract methods are declared without implementation and must be implemented
by subclasses.

Instantiation:

e Instantiation refers to the creation of an instance (object) of a class.

e |t occurs when the class constructor method is called, providing the object with
properties and methods defined in the class blueprint.

Passing Parameters:

e Passing parameters by value allows methods to access only the parameter's value,
not the variable itself.

e Passing parameters by reference passes a pointer to the variable, allowing methods
to modify the original variable.

Method Overriding:

e Method overriding occurs when a subclass provides its own implementation for a
method inherited from a superclass.

e It allows for customizing the behavior of inherited methods in child classes.

Exception Handling:

e Exception handling is a process used to handle errors that occur during program
execution.

e It allows for graceful error handling, preventing the application from crashing and
providing users with feedback on how to proceed.

"self" Object:

e The "self" reference refers to the current instance of the object within a class.

e It is used to access instance variables and methods within the class.

Static Methods:

e Static methods exist independently of class instances and do not have access to
instance variables.

e They are useful for defining utility functions that do not require access to instance-
specific data.

When to use functional vs object oriented solutions?

e Functions are action based, and classes are state based
e Functions easier to write unit tests
e object oriented solution is better for real world simulation, or needing to keep states

What are dunder methods?

Design a Parking Lot

Starting an object-oriented design interview for a parking lot scenario involves several key steps to
ensure a structured and thorough approach. Here's a suggested outline:

1. Clarify Requirements:
e Begin by asking clarifying questions to fully understand the requirements and
constraints of the parking lot system. This may include:
o The size and capacity of the parking lot.
Types of vehicles allowed (e.g., cars, motorcycles, trucks).
Parking rules and regulations (e.g., reserved spaces, handicapped spots).
Payment methods and pricing models.
Operational considerations (e.g., entry/exit points, security measures).
Any additional features or functionalities required.
2. ldentify Objects and Responsibilities:
e Based on the requirements gathered, identify the main objects and their
responsibilities within the parking lot system. This may include:
o ParkingLot: Representing the parking lot itself.
o Vehicle: Representing different types of vehicles.
ParkingSpace: Representing individual parking spaces.
Ticket: Representing parking tickets issued to vehicles.
Entrance/Exit: Representing entry and exit points.
PaymentSystem: Handling payment processing.
o SecuritySystem: Managing security measures (e.g., surveillance).
e Define the attributes and behaviors (methods) of each object.
3. Define Relationships:
e Establish relationships between the identified objects. For example:
o ParkingLot has ParkingSpaces and Entrance/Exit points.
o Vehicle occupies ParkingSpace(s) and obtains Ticket(s).
o PaymentSystem interacts with Ticket(s) to process payments.
o SecuritySystem monitors ParkingLot and Entrance/Exit points.
e Determine the multiplicity and cardinality of relationships (e.g., one-to-one, one-to-
many).
4. Design Class Diagram:
e Create a class diagram to visually represent the relationships between objects. Use
UML notation to depict classes, attributes, methods, and associations.
e Ensure that the class diagram accurately reflects the identified objects and their
interactions.
5. Consider Design Patterns:
e Evaluate whether any design patterns (e.g., Factory, Singleton, Strategy) are
applicable to optimize the design and address specific requirements.
e Integrate relevant design patterns into the class diagram as needed.

o

o

o

o

o

o

o

o

o

6. Discuss Trade-offs and Scalability:
e Discuss any trade-offs involved in the design decisions made, such as performance
vs. simplicity, flexibility vs. efficiency, etc.
e Consider how the desigh can accommodate future scalability and extensibility
requirements.
7. Validate and Iterate:
e Validate the design with the interviewer, ensuring that it aligns with the
requirements and addresses all key aspects of the parking lot system.
e Be prepared to iterate on the design based on feedback and further discussions with
the interviewer.

By following this structured approach, you can effectively tackle an object-oriented design
interview question for designing a parking lot system, demonstrating your ability to analyze
requirements, identify objects, define relationships, and create a well-structured design.

Concepts

e Objects are representation of real world entities
o Data/attributes
o Behavior

e Classes are "classified" as blueprints, template, or cookie cutter of Objects
o When creating objects from a class, it is instantiated

Noun Verb Technique

Noun <— Objects

Goes to the website and selects the

slots for the classes he/she wants to take.

Adds them to cart.

Checksout and makes the payment.

http://159.223.197.234/uploads/images/gallery/2024-02/T7Bimage.png

Verb <— Behaviour

Goes to the website and selects the

slots for the classes he/she wants to take.

Adds them to cart.

Checksout and makes the payment.

Gets a confirmation of the

classes being booked.

Creditcard

+ number:number

+ name:string
+ age:number + CreditCard(number): void

+ type:string

+ User(string, string, number):void
+ setName(string):void

+ getName(): string DrivingClass

+ name:string
+ cost:number

+ DrivingClass(string, number):void
Cart

+ classes:DrivingClass][]

+ addDrivingClass(DrivingClass):void
+ removeDrivingClass(DrivingClass):void

+ getCartAmount():number + Date-date

+ startTime:time
+ endTime:time

http://159.223.197.234/uploads/images/gallery/2024-02/HA5image.png
http://159.223.197.234/uploads/images/gallery/2024-02/nkgimage.png

2 kind of relationships
among classes

has a relation

Is a relation

http://159.223.197.234/uploads/images/gallery/2024-03/QsEscreenshot-from-2024-03-02-16-56-11.png

has a relation

Composition/Aggregation

-_— 00

>
a4 i
i “It 4

CAR LESSON

http://159.223.197.234/uploads/images/gallery/2024-03/screenshot-from-2024-03-02-16-57-30.png

