
Vulkan & OpenGL
Differences (Shaded
Triangle)

1. Explicit Control
Vulkan: Provides explicit control over GPU resources and operations. You need to manage
and allocate resources like memory, command buffers, and synchronization primitives
directly.
OpenGL: Abstracts much of this complexity. It handles resource management for you,
making it easier for developers but less flexible for advanced use cases.

2. Command Buffers
Vulkan: Uses command buffers to record rendering commands before submitting them to
the GPU. You can record commands once and execute them multiple times, allowing for
better performance optimization.
OpenGL: Commands are issued immediately and not recorded for later execution. This
can be less efficient, especially in complex rendering scenarios.

3. Multiple Queues
Vulkan: Supports multiple queues for different operations (graphics, compute, transfer).
You can use these queues in parallel to optimize performance.
OpenGL: Generally operates on a single command queue, meaning that all rendering
commands are submitted sequentially.

4. Pipeline Creation
Vulkan: Requires explicit pipeline creation for each shader stage and configuration. This
process can be cumbersome but allows for fine-tuned optimization and custom behavior.

OpenGL: Simplifies pipeline management. You can bind shaders and set states with fewer
API calls, which makes setup quicker and more straightforward.

5. Synchronization
Vulkan: Provides detailed synchronization control using semaphores and fences. This
allows you to manage resource access and rendering operations more precisely.
OpenGL: Uses simpler synchronization mechanisms. It abstracts the synchronization
process, which can lead to issues like implicit synchronization overhead.

6. Resource Binding
Vulkan: Requires explicit binding of resources (like buffers and textures) to the pipeline,
which can lead to better performance through optimization.
OpenGL: Uses a more implicit model for resource binding, where resources can be bound
and unbound more flexibly but can introduce overhead.

7. Shader Modules
Vulkan: Utilizes shader modules that compile GLSL (or SPIR-V) into an intermediate
representation. This approach provides more control over shader compilation and linking.
OpenGL: Shaders are compiled and linked at runtime, which is easier but provides less
flexibility in optimizing shader performance.

8. Render Passes
Vulkan: Uses render passes to define the structure of rendering operations, allowing for
more control over how framebuffer attachments are managed and used.
OpenGL: Does not have an explicit concept of render passes; instead, it relies on simpler
framebuffer attachments and operations.

Summary
Vulkan provides more control, flexibility, and optimization opportunities compared to
OpenGL, but at the cost of complexity. This makes Vulkan better suited for high-
performance applications, while OpenGL is often preferred for simpler applications due to
its ease of use and abstraction.
If you're setting up a shaded triangle in Vulkan, you'll need to manage more details, such
as command buffer creation, resource binding, and synchronization, which are mostly

handled automatically by OpenGL.

Shaded Triangle Steps
OpenGL Steps

+--------------------------------------+
| OpenGL Application |
| (Setup and Initialization) |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Shader Program |
| GLuint shaderProgram = glCreateProgram(); |
| glAttachShader(shaderProgram, vertexShader); |
| glAttachShader(shaderProgram, fragmentShader); |
| glLinkProgram(shaderProgram); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Setup Vertex Array Object |
| GLuint VAO; |
| glGenVertexArrays(1, &VAO); |
| glBindVertexArray(VAO); |
| glGenBuffers(1, &VBO); |
| glBindBuffer(GL_ARRAY_BUFFER, VBO); |
| glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); |
| glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0); |
| glEnableVertexAttribArray(0); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Draw Call |

Vulkan Steps

| glUseProgram(shaderProgram); |
| glBindVertexArray(VAO); |
| glDrawArrays(GL_TRIANGLES, 0, 3);|
+--------------------------------------+
 |
 v
+--------------------------------------+
| Framebuffer |
| SwapBuffers(window); |
+--------------------------------------+

+--------------------------------------+
| Vulkan Application |
| (Setup and Initialization) |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Instance |
| vkCreateInstance(&instanceInfo, &instance); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Device |
| vkCreateDevice(instance, &deviceCreateInfo, &device); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Shader Modules |
| vkCreateShaderModule(device, &vertShaderInfo, &vertShaderModule); |
| vkCreateShaderModule(device, &fragShaderInfo, &fragShaderModule); |
+--------------------------------------+
 |
 v
+--------------------------------------+

| Create Graphics Pipeline |
| vkCreateGraphicsPipelines(device, &pipelineInfo, &pipeline); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Vertex Buffer |
| vkCreateBuffer(device, &bufferCreateInfo, &vertexBuffer); |
| vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Allocate Command Buffer |
| vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Record Command Buffer |
| vkBeginCommandBuffer(commandBuffer, &beginInfo); |
| vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); |
| vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer, offsets); |
| vkCmdDraw(commandBuffer, 3, 1, 0, 0); |
| vkEndCommandBuffer(commandBuffer); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Submit Command Buffer |
| vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Render Pass |
| vkBeginRenderPass(commandBuffer, &renderPassInfo); |
+--------------------------------------+
 |
 v

1. Initialize Vulkan
Create a Vulkan Instance:

This is the starting point for any Vulkan application and contains information about
the application and the Vulkan API version.

Use vkCreateInstance to create a Vulkan instance.

2. Select a Physical Device
Enumerate Physical Devices:

Find available physical devices (GPUs) on the system.
Use vkEnumeratePhysicalDevices

Select a Suitable Device:
Choose a physical device that supports the features and queues you need (like
graphics, compute, etc.).

3. Create a Logical Device
Create Logical Device:

Create a logical device that allows your application to interact with the physical
device. Specify the queue types needed, such as a graphics queue.

Use vkCreateDevice

4. Create a Swap Chain
Choose Swap Chain Parameters:

Determine the swap chain's surface format, presentation mode, and extent.
Create Swap Chain:

Create the swap chain, which handles presenting images to the screen.
Use vkCreateSwapchainKHR

5. Create Image Views
Create Image Views:

For each image in the swap chain, create an image view using vkCreateImageView .
This allows Vulkan to access the images in the swap chain.

6. Create Render Pass

+--------------------------------------+
| Framebuffer |
| vkEndRenderPass(commandBuffer); |
| vkQueuePresentKHR(presentQueue, &presentInfo); |
+--------------------------------------+

Define Render Pass:
Create a render pass that defines how framebuffer attachments (color, depth, etc.)
are used during rendering.

Use vkCreateRenderPass

7. Create Framebuffers
Create Framebuffers:

For each image view in the swap chain, create a framebuffer using
vkCreateFramebuffer . This links the image views with the render pass.

8. Create Shaders
Load Shader Code:

Load the vertex and fragment shader code, typically written in GLSL or HLSL.
Create Shader Modules:

Create shader modules for both the vertex and fragment shaders.
Use vkCreateShaderModule

9. Create Graphics Pipeline
Define Graphics Pipeline:

Use vkCreateGraphicsPipelines to create the graphics pipeline.
This involves specifying the shader stages, fixed-function state (like viewport,
rasterization, blending), and the render pass.

10. Create Vertex Buffer
Create Buffer:

Create a vertex buffer that holds the triangle's vertex data (positions, colors, etc.).
Use vkCreateBuffer

Allocate Memory:
Allocate memory for the vertex buffer using vkAllocateMemory and bind it using
vkBindBufferMemory .

Copy Data:
Map the memory, copy the vertex data into it, and unmap the memory.

11. Create Command Buffers
Allocate Command Buffers:

Allocate command buffers for recording commands.
Use vkAllocateCommandBuffers

12. Record Commands
Begin Command Buffer:

Start recording commands in the command buffer.
Use vkBeginCommandBuffer

Begin Render Pass:
Use vkCmdBeginRenderPass

Bind Graphics Pipeline:
Use vkCmdBindPipeline

Bind Vertex Buffer:
Use vkCmdBindVertexBuffers

Draw Command:
Use vkCmdDraw to issue the draw command for the triangle.

End Render Pass:
Use vkCmdEndRenderPass to finish the render pass.

End Command Buffer:
Use vkEndCommandBuffer to finalize the command buffer.

13. Submit Command Buffer
Submit to Queue:

Submit the recorded command buffer to the graphics queue for execution.
Use vkQueueSubmit

14. Presenting the Image
Present the Frame:

Present the rendered image from the swap chain to the screen.
Use vkQueuePresentKHR

15. Cleanup
Cleanup Resources:

Destroy resources in the reverse order of their creation, such as pipelines,
framebuffers, swap chains, and the Vulkan instance.

RESOURCES

https://edw.is/learning-vulkan/#what-i-gained-from-switching-to-vulkan

Revision #10
Created 13 October 2024 20:32:21 by victor
Updated 13 October 2024 21:44:39 by victor

