
Graphics API
OpenGL Graphics Pipeline
Computer Graphics From Scratch

Raytracing
Rasterization

Vulkan

Getting Started with Vulkan
Vulkan & OpenGL Differences (Shaded Triangle)

OpenGL Graphics Pipeline
Graphics Pipeline is an abstract model that describes sequence of steps needed to render a 3D
scene.

asynchronous operation - The CPU sends rendering commands to the GPU, which then perform
rendering operations while the CPU continues with other tasks

VRAM - Memory core on the GPU which stores buffers

image buffer - Has back image buffer, where the GPU renders the scene, and the front
image buffer, where the exact pixel data this is visible to the viewport. Buffer Swap is
performed when the back image buffer is done rendering and ready to be displayed by
the front image buffer.
Depth Buffer / Z- Buffer - Stores values how far the pixel lies in every pixel im the
image buffer. Used to perform hidden surface elimination, by allowing pixel drawn that if
its depth is less than the pixel already in the image buffer
Stencil Buffer -
Texture Maps - Images applied to surface of an object. Can include othe maps such as
bump map. Takes up largest amount of VRAM

0. Core Concepts and Vocabulary
rendering - Generate two-dimensional images of 3D scenes

shading - The darkness of an object not in direct light

shadows - the silhouette of one object's shape on the surface of another object

frustrum - Region contained within the truncated pyramid shape outlined in white indicates the
space visible to the camera.

pixel - specify colors using triples of floating-point numbers between 0 and 1 to represent the
amount of red, green, and blue light present in a color; a value of 0 represents no amount of that
color is present, while a value of 1 represents that color at full intensity

raster - rendered scene via an array of pixels (picture elements) which will be displayed
on a screen, arranged in a 2D grid
resolution - the number of pixels in the raster, the more it is the higher the quality
precision - the number of bits used for each pixel as each bit has two possible values (0
or 1), the number of colors that can be displayed

buffer (data buffer/buffer memory) is a part of a computer's memory that serves as temporary
storage for data while it is being moved from one location to another.

frame buffer - Pixel data is stored in a region of memory. A framebuffer may contain
multiple buffers that store diferent types of data for each pixel.

color buffer - located in frame buffer which stores RGB values. Need this at
minimum. Alpha value can also be stored
depth buffer - located in frame buffer, which stores distances from points on scene
objects to the virtual camera. Depth values are used to determine whether the
various points on each object are in front of or behind other objects (from the
camera’s perspective), and thus whether they will be visible when the scene is
rendered.
stencil buffer - store values used in generating advanced effects, such as shadows,
reffections, or portal rendering.

1. Application Stage
Initializing the window where the rendered graphics will be displayed.

Reading data required for the rendering process and sending to the GPU, such as
vertex attributes, describes appearance of geometric shapes rendered, stored as
in vertex buffer objects (VBO)
images to be applied to surfaces, stored in texture buffers
source code for vertex shader and fragment shader programs, sent to GPU to be
complied and loaded.

Loop that re-renders the scene repeatedly, like 60 fps
Monitoring hardware for user inputs, handled by the CPU
Vertex Array Objects, manages the associations and whether they are turned on and
off, between attributes data stored in VBOs and attribute variables in the vertex shader
program

2. Geometry Processing
Determining the final position of each vertex of the geometric shapes to be rendered, implemented
by a program called the vertex shader

mesh - a collection of points (vertices) that are grouped into lines or triangles to make a shape of a
geometric object

vertex - a point with a data structure holding properties or attributes that are specific to
rendering.

3D position of the corresponding point. Mandatory
color to be used when rendering the point. Optional

texture coordinates (or UV coordinates) - indicates a point in an image that is
mapped to the vertex. Optional
normal vector - indicates the direction perpendicular to a surface, used for lighting
calculations. Optional

Vertex shader is applied to each of the vertices to determine the final position each point being
rendered, which is typically calculated from a series of transformations:

model transformation - the collection of points defining the intrinsic shape of an object
may be translated, rotated, and scaled so that the object appears to have a particular
location, orientation, and size with respect to a 3D world.

world space - coordinates expressed from this frame of reference are said to be in
world space
virtual camera - camera with its own position and orientation in the virtual world.
view transformation - In order to render the world from the virtual camera’s point
of view, the coordinates of each object in the world must be converted to a frame of
reference relative to the camera itself.
view space (camera/eye space) - coordinates after view transformation

projection transformation - clipping points outside the view space
clip space - points outside the view space
perspective projection
orthographic projection

In addition to these transformation calculations, the vertex shader may perform additional
calculations and send additional information to the fragment shader as needed.

The end of geometry processing

3. Rasterization
geometric primitive - How the vertices is connected to produce a shape. OpenGL supports ten
of these types, including Points, lines, or triangles, which consist of sets of 1, 2, or 3 points.

Rasterization - Process of filling in the horizontal spans of pixels belonging to a geometric
primitive.

primitive assembly - process of grouping points to geometric primitives

Once the geometric primitives have been assembled, the next step is to determine which pixels
correspond to the interior of each geometric primitive. Since pixels are discrete units, they will
typically only approximate the continuous nature of a geometric shape, and a criterion must be
given to clarify which pixels are in the interior.

Three simple criteria could be

1. The entire pixel area is contained within the shape
2. The center point of the pixel is contained within the shape
3. Any part of the pixel is contained within the shape

fragment - For each pixel corresponding to the interior of a shape

raster position / pixel position - data stored in a fragment
depth - stored in fragment when in 3D. Needed when points on different geometric
objects would overlap from the perspective of the viewer. When this happens, the
associated fragments would correspond to the same pixel, and the depth value
determines which fragment’s data should be used when rendering this pixel
Additional data may be assigned to each vertex, such as a color, and passed along
from the vertex shader to the fragment shader. In this case, a new data field is
added to each fragment.
interpolated - from the values at the vertices: calculated using a weighted average,
depending on the distance from the interior point to each vertex. Optional

4. Pixel Processing
This stage determinea the final color of each pixel, storing this data in the color buffer within the
frame buffer.

During the first part, a program called the fragment shader is applied to each of the fragments to
calculate their final color. This calculation involves various data stored in each fragment, in
combination with global data available during rendering, such as

base color applied to the entire shape
colors stored in each fragment (interpolated from vertex colors)
textures, where colors are sampled from locations specified by UV coordinates
light sources, whose relative position and/or orientation may lighten or darken the color,
depending on the direction the surface is facing at a point, specified by normal vector

The GPU handles the following:

Depth values stored in each fragment are used to resolve visibility issues in a 3D scene,
determining which parts of objects are blocked from view by other objects. After the color
of a fragment has been calculated, the fragment’s depth value will be compared to the
value currently stored in the depth buffer at the corresponding pixel coordinates. If the
fragment's depth value is smaller than the depth buffer value, then the corresponding
point is closer to the viewer than any that were previously processed, and the fragment’s
color will be used to overwrite the data currently stored in the color buffer at the
corresponding pixel coordinates.
Transparency using alpha values stored in the color of each fragment, determining how
much color blend with another color. All opaque objects must be rendered first (in any

order), followed by transparent objects ordered from farthest to closest with respect to the
virtual camera.

Computer Graphics From
Scratch

Computer Graphics From Scratch

Raytracing

Computer Graphics From Scratch

Rasterization
Color

Lines

1. draw line by using Interpolate to compute values of a linear function.

Filled Triangles

draw lines to make wireframe of a triangle using 3 2D Vertices with connecting points

1. Sort the points
2. compute the x coordinate of the triangle edges
3. concatenate the short sides
4. determine which is ledt annd which is right
5. draw the horizontal segments

Shaded Triangles

Vulkan
vulkan low level modern graphics api

Vulkan

Getting Started with Vulkan
Install Vulkan SDK:

https://vulkan.lunarg.com/

https://vulkan.lunarg.com/

Vulkan

Vulkan & OpenGL
Differences (Shaded
Triangle)

1. Explicit Control
Vulkan: Provides explicit control over GPU resources and operations. You need to manage
and allocate resources like memory, command buffers, and synchronization primitives
directly.
OpenGL: Abstracts much of this complexity. It handles resource management for you,
making it easier for developers but less flexible for advanced use cases.

2. Command Buffers
Vulkan: Uses command buffers to record rendering commands before submitting them to
the GPU. You can record commands once and execute them multiple times, allowing for
better performance optimization.
OpenGL: Commands are issued immediately and not recorded for later execution. This
can be less efficient, especially in complex rendering scenarios.

3. Multiple Queues
Vulkan: Supports multiple queues for different operations (graphics, compute, transfer).
You can use these queues in parallel to optimize performance.
OpenGL: Generally operates on a single command queue, meaning that all rendering
commands are submitted sequentially.

4. Pipeline Creation

Vulkan: Requires explicit pipeline creation for each shader stage and configuration. This
process can be cumbersome but allows for fine-tuned optimization and custom behavior.
OpenGL: Simplifies pipeline management. You can bind shaders and set states with fewer
API calls, which makes setup quicker and more straightforward.

5. Synchronization
Vulkan: Provides detailed synchronization control using semaphores and fences. This
allows you to manage resource access and rendering operations more precisely.
OpenGL: Uses simpler synchronization mechanisms. It abstracts the synchronization
process, which can lead to issues like implicit synchronization overhead.

6. Resource Binding
Vulkan: Requires explicit binding of resources (like buffers and textures) to the pipeline,
which can lead to better performance through optimization.
OpenGL: Uses a more implicit model for resource binding, where resources can be bound
and unbound more flexibly but can introduce overhead.

7. Shader Modules
Vulkan: Utilizes shader modules that compile GLSL (or SPIR-V) into an intermediate
representation. This approach provides more control over shader compilation and linking.
OpenGL: Shaders are compiled and linked at runtime, which is easier but provides less
flexibility in optimizing shader performance.

8. Render Passes
Vulkan: Uses render passes to define the structure of rendering operations, allowing for
more control over how framebuffer attachments are managed and used.
OpenGL: Does not have an explicit concept of render passes; instead, it relies on simpler
framebuffer attachments and operations.

Summary
Vulkan provides more control, flexibility, and optimization opportunities compared to
OpenGL, but at the cost of complexity. This makes Vulkan better suited for high-
performance applications, while OpenGL is often preferred for simpler applications due to
its ease of use and abstraction.

If you're setting up a shaded triangle in Vulkan, you'll need to manage more details, such
as command buffer creation, resource binding, and synchronization, which are mostly
handled automatically by OpenGL.

Shaded Triangle Steps
OpenGL Steps

+--------------------------------------+
| OpenGL Application |
| (Setup and Initialization) |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Shader Program |
| GLuint shaderProgram = glCreateProgram(); |
| glAttachShader(shaderProgram, vertexShader); |
| glAttachShader(shaderProgram, fragmentShader); |
| glLinkProgram(shaderProgram); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Setup Vertex Array Object |
| GLuint VAO; |
| glGenVertexArrays(1, &VAO); |
| glBindVertexArray(VAO); |
| glGenBuffers(1, &VBO); |
| glBindBuffer(GL_ARRAY_BUFFER, VBO); |
| glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); |
| glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0); |
| glEnableVertexAttribArray(0); |
+--------------------------------------+
 |
 v

Vulkan Steps

+--------------------------------------+
| Draw Call |
| glUseProgram(shaderProgram); |
| glBindVertexArray(VAO); |
| glDrawArrays(GL_TRIANGLES, 0, 3);|
+--------------------------------------+
 |
 v
+--------------------------------------+
| Framebuffer |
| SwapBuffers(window); |
+--------------------------------------+

+--------------------------------------+
| Vulkan Application |
| (Setup and Initialization) |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Instance |
| vkCreateInstance(&instanceInfo, &instance); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Device |
| vkCreateDevice(instance, &deviceCreateInfo, &device); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Shader Modules |
| vkCreateShaderModule(device, &vertShaderInfo, &vertShaderModule); |
| vkCreateShaderModule(device, &fragShaderInfo, &fragShaderModule); |
+--------------------------------------+
 |

 v
+--------------------------------------+
| Create Graphics Pipeline |
| vkCreateGraphicsPipelines(device, &pipelineInfo, &pipeline); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Create Vertex Buffer |
| vkCreateBuffer(device, &bufferCreateInfo, &vertexBuffer); |
| vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Allocate Command Buffer |
| vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Record Command Buffer |
| vkBeginCommandBuffer(commandBuffer, &beginInfo); |
| vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); |
| vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer, offsets); |
| vkCmdDraw(commandBuffer, 3, 1, 0, 0); |
| vkEndCommandBuffer(commandBuffer); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Submit Command Buffer |
| vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); |
+--------------------------------------+
 |
 v
+--------------------------------------+
| Render Pass |
| vkBeginRenderPass(commandBuffer, &renderPassInfo); |
+--------------------------------------+

1. Initialize Vulkan
Create a Vulkan Instance:

This is the starting point for any Vulkan application and contains information about
the application and the Vulkan API version.

Use vkCreateInstance to create a Vulkan instance.

2. Select a Physical Device
Enumerate Physical Devices:

Find available physical devices (GPUs) on the system.
Use vkEnumeratePhysicalDevices

Select a Suitable Device:
Choose a physical device that supports the features and queues you need (like
graphics, compute, etc.).

3. Create a Logical Device
Create Logical Device:

Create a logical device that allows your application to interact with the physical
device. Specify the queue types needed, such as a graphics queue.

Use vkCreateDevice

4. Create a Swap Chain
Choose Swap Chain Parameters:

Determine the swap chain's surface format, presentation mode, and extent.
Create Swap Chain:

Create the swap chain, which handles presenting images to the screen.
Use vkCreateSwapchainKHR

5. Create Image Views
Create Image Views:

For each image in the swap chain, create an image view using vkCreateImageView .
This allows Vulkan to access the images in the swap chain.

 |
 v
+--------------------------------------+
| Framebuffer |
| vkEndRenderPass(commandBuffer); |
| vkQueuePresentKHR(presentQueue, &presentInfo); |
+--------------------------------------+

6. Create Render Pass
Define Render Pass:

Create a render pass that defines how framebuffer attachments (color, depth, etc.)
are used during rendering.

Use vkCreateRenderPass

7. Create Framebuffers
Create Framebuffers:

For each image view in the swap chain, create a framebuffer using
vkCreateFramebuffer . This links the image views with the render pass.

8. Create Shaders
Load Shader Code:

Load the vertex and fragment shader code, typically written in GLSL or HLSL.
Create Shader Modules:

Create shader modules for both the vertex and fragment shaders.
Use vkCreateShaderModule

9. Create Graphics Pipeline
Define Graphics Pipeline:

Use vkCreateGraphicsPipelines to create the graphics pipeline.
This involves specifying the shader stages, fixed-function state (like viewport,
rasterization, blending), and the render pass.

10. Create Vertex Buffer
Create Buffer:

Create a vertex buffer that holds the triangle's vertex data (positions, colors, etc.).
Use vkCreateBuffer

Allocate Memory:
Allocate memory for the vertex buffer using vkAllocateMemory and bind it using
vkBindBufferMemory .

Copy Data:
Map the memory, copy the vertex data into it, and unmap the memory.

11. Create Command Buffers
Allocate Command Buffers:

Allocate command buffers for recording commands.
Use vkAllocateCommandBuffers

12. Record Commands
Begin Command Buffer:

Start recording commands in the command buffer.
Use vkBeginCommandBuffer

Begin Render Pass:
Use vkCmdBeginRenderPass

Bind Graphics Pipeline:
Use vkCmdBindPipeline

Bind Vertex Buffer:
Use vkCmdBindVertexBuffers

Draw Command:
Use vkCmdDraw to issue the draw command for the triangle.

End Render Pass:
Use vkCmdEndRenderPass to finish the render pass.

End Command Buffer:
Use vkEndCommandBuffer to finalize the command buffer.

13. Submit Command Buffer
Submit to Queue:

Submit the recorded command buffer to the graphics queue for execution.
Use vkQueueSubmit

14. Presenting the Image
Present the Frame:

Present the rendered image from the swap chain to the screen.
Use vkQueuePresentKHR

15. Cleanup
Cleanup Resources:

Destroy resources in the reverse order of their creation, such as pipelines,
framebuffers, swap chains, and the Vulkan instance.

RESOURCES

https://edw.is/learning-vulkan/#what-i-gained-from-switching-to-vulkan

