
Variables in Memory
The computer has finite resources for "remembering" things. So, you can't just keep asking it to
remember data without at some point also telling it that it's ok to forget the data. Otherwise, at
some point it will be completely full of stuff you told it to remember, and it just won't be able to
remember anything new, even if most of that data isn't even accessible through variables anymore
(this is called a memory leak). The duration of time between remembering the data (allocating
space for it in memory) and telling your computer that it can forget the data (freeing/deallocating
the space) is called the lifetime of the memory.

Date Lifetime
Three categories for the lifetime of memory in order to understand how variables are stored:

Global: This memory is around for the entire lifetime of your program. Generally this is a
fixed amount of space that is allocated right when the program starts, and it cannot grow.
Local: The memory is allocated for you when entering a particular portion of the program,
and automatically freed for you when exiting that part. This is denoted with curly braces
{} , so it could be the scope of an...

entire function
if statement
loop
Anything inside curly braces {}

Inside a block scope have limited lifetime and visibility. Outside that block, those variables
no longer exist.
Dynamic: This memory has a lifetime which is unknown at the time of allocation. The
program explicitly asks for a specific size of memory, and then that memory lives until the
program explicitly says the memory is no longer needed.

In C++, this is done via malloc or new and then the corresponding free or delete
calls.

Many languages (like Python, but not C++) uses a "Garbage Collector" takes
control of the lifetime of dynamically allocated memory. You only ever call
new and then there is a background algorithm always running which tracks
which memory is still being used and frees it for you. This avoids most causes
of memory leaks, but it cost performance. C++ puts the burden on the
programmer to do it manually (and correctly) to be more performant.

Static, Stack, and Heap

Stack, heap, or in static/global memory are stored in RAM (Random Access Memory).

They occupy different regions of RAM based on their storage duration and allocation mechanism.

Memory Layout Representation

Directionality Matters: The upward growth of the heap and downward growth of the stack is
crucial for efficient memory utilization, error detection, performance, and cache optimization.

Safety Mechanism: This design allows for better control over memory usage and helps prevent
memory-related errors, making it an important aspect of system and application architecture.

Memory Addresses
Within RAM there is Memory addresses, which are fundamental to how data is accessed and
manipulated in programming. They allow the CPU to locate and retrieve data stored in RAM,
making them essential for efficient computation and memory management.

In computer systems, a memory address is a unique identifier for a location in memory where data
is stored. Whether a memory address is high or low does not affect speed, but rather designates
location. Memory addresses are typically represented in hexadecimal format. Here are a few
examples:

Hexadecimal Format:
32 bit system:

0x00400000
0x7FFF1234

64 bit system:

|-----------------------------------| <- High Memory Address (ends at 0xFFFFFFFFFFFFFFFF)
| Stack | <--- Grows Downwards
(Local variables, function calls)
Unused Space

Heap
(Dynamically allocated memory)

Text Segment

Initialized Data

Uninitialized Data (.bss)

0x00007FFDCAFE1234
Example Usage:

In C++ coding, the Static, Heap, and Stack are corelated with their associated variables, which are
stored through memory addresses.

Variables in Memory
variable - refers to a named memory location that can hold data that might change during
program execution.

basic variable - Any entity that holds a value and has a type (like int , float , char , etc.)

complex variable - entities such as pointers, arrays, and objects of a class

When you declare a variable, the system allocates memory to store the value, and that memory is
identified by the variable name. The compiler (GCC, Clang, etc) maps these names to actual
memory addresses when the program is compiled and executed.

Depending on the context (stack, heap, or static), this memory may reside in different regions:

1. Static Variables
Storage Duration:

Static Storage Duration: The variable is allocated when the program starts
and deallocated when the program ends, persisting for the entire lifetime of
the program.

Scope:

#include <iostream>

int main() {
 int x = 42; // Declare an integer variable
 std::cout << "Memory address of x: " << &x << std::endl; // Print the memory address of x
 return 0;
}

Memory address of x: 0x7fffc3a1a4b8

int number; // Declaring an `int` variable named `number`

int number = 42; // Declaring and initializing `number` with 42.

Global Static: When declared outside of functions or classes, static variables
have file scope (internal linkage). They are visible only in the file or translation
unit they are defined in.
Local Static: When declared inside a function, static variables have function
scope, but their value persists across function calls.

Memory Location:

Data Segment (either .bss for uninitialized or .data for initialized variables) of
the program’s memory.

Initialization:

Global Static Variables: Automatically initialized to zero (or nullptr for
pointers) if not explicitly initialized.
Local Static Variables: Initialized the first time the code execution passes
through their declaration (e.g., in a function). If not explicitly initialized, they
default to zero.

When to Use:

Need for a variable to persist across function calls or to exist throughout
the lifetime of the program.
Global configuration data or constants that should be shared across the
entire program but should not be modified frequently.
To preserve the state of a local variable in a function between calls (like a
counter)

Pros:

No need for manual memory management.
Efficient for persisting values across function calls or through the program's
lifetime.

Cons:

Overuse of global static variables can lead to tight coupling and difficult
debugging.
Can increase memory usage if used excessively, as memory is allocated for
the entire program duration.

#include <iostream>

static int globalStatic = 42; // Static global variable (file scope)

void function() {

2. Heap (Free Store) Variables
Storage Duration:

Dynamic Storage Duration: Variables on the heap are dynamically allocated
using new (or malloc in C) and persist until they are explicitly deallocated
using delete (or free).

Scope:

The scope of a pointer to a heap-allocated variable depends on where the
pointer is declared, but the memory allocated on the heap persists
independently of the pointer’s scope until manually freed.

Memory Location:

Heap is managed dynamically.

Initialization:

Non-initialized heap variables are left with indeterminate values unless
you explicitly initialize them.
Heap-allocated objects are initialized through constructors if they are class
objects.

When to Use:

When you don’t know the size of the data at compile time (e.g., user
input, file data, dynamically sized arrays).
When objects need to persist beyond the scope of the function that
created them.

 static int localStatic = 10; // Static local variable (function scope)
 localStatic++;
 std::cout << "Local Static: " << localStatic << std::endl;
}

int main() {
 function(); // Prints 11
 function(); // Prints 12
 return 0;
}

For large objects that might exceed the limited size of the stack (e.g., large
arrays, buffers, or structures).
When you need to allocate memory for complex data structures (like linked
lists, trees, or graphs) that can grow or shrink dynamically.

Pros:

Provides flexibility to allocate memory at runtime based on dynamic needs.
Can allocate larger chunks of memory that may not fit in the stack.

Cons:

Manual memory management is required (you must use new to allocate
and delete to free).
Potential for memory leaks if memory is not properly deallocated.
Slower than stack memory due to the overhead of dynamic memory
management (allocation and deallocation).

3. Stack Variables (Automatic Storage Duration)
Stack will pretty much never exhaust it unless

you define absurdly large objects on the stack (e.g. an array of milions of
objects)
you recurse too deeply (usually as a result of a bug of infinite recursion or
unnecessarily large stack frame size)

Unique to stack is the stack frame, which is a structured block of memory on the stack that
is created when a function is called.

 It holds:

Local variables

#include <iostream>

int main() {
 int* heapVar = new int(5); // Dynamically allocated on the heap
 std::cout << "Heap Variable: " << *heapVar << std::endl;

 delete heapVar; // Must be manually deallocated to avoid memory leak
 return 0;
}

Function parameters
Return address (where to return after the function call)
Saved registers and other context information

Lifetime: The stack frame is automatically created when the function is invoked and
destroyed when the function exits.
No "Heap Frames" or "Static Frames": Heap memory is more flexible and does
not use frames. Instead, it uses blocks of memory allocated as needed, allowing for
dynamic data structures and sizes.
Example: https://caseymuratori.com/blog_0015

Storage Duration:

Automatic Storage Duration: Variables declared on the stack (inside a
function or block scope) are automatically allocated when their block of code is
entered and deallocated when the block is exited.

Scope:

Stack variables have local scope, which means they are visible only inside the
function or block in which they are declared.

Memory Location:

Stack, which is a part of memory where automatic variables are stored.

Initialization:

Uninitialized primitive types (like int , char , etc.) in C++ have
indeterminate values.
Local variables of class types are initialized through constructors.
Always good practice to initialize stack variables to avoid undefined behavior.

When to Use:

For simple, small variables that are local to a function or block.
When the size of the variable is known at compile time.
When you need automatic memory management—stack variables are
automatically deallocated when they go out of scope, making them safer and
faster.
When short-lived variables are sufficient (i.e., variables that don’t need to
persist beyond their block or function scope).

Pros:

Automatic memory management: No need to explicitly free memory;
variables are automatically destroyed when they go out of scope.

https://caseymuratori.com/blog_0015

Fast allocation and deallocation compared to heap allocation.
Safer in terms of preventing memory leaks, as memory management is
handled by the program.

Cons:

Limited by stack size: Large variables can cause stack overflow, especially
with recursion or large data structures.
Variables are destroyed as soon as they go out of scope, so they can't persist
beyond their function or block.

REFERENCES

Stack Vs Heap: Key Difference Between Stack & Heap Memory | Simplilearn

#include <iostream>

void function() {
 int stackVar = 10; // Allocated on the stack
 std::cout << "Stack Variable: " << stackVar << std::endl;
} // 'stackVar' is destroyed here when function exits

int main() {
 function();
 return 0;
}

Revision #23
Created 24 September 2024 21:51:45 by victor
Updated 13 October 2024 21:47:18 by victor

https://www.simplilearn.com/tutorials/data-structure-tutorial/stacks-vs-heap

