11 System Design

e System Design Overview

e Frontend, Backend, Infrastructure



System Design Overview

- TTTTS
-~
r
r
/
!
!
!
| OOP Design Infrastructure
1 DE.S:Ern
\
\ _ -
\ -~
\ 7’
Y /!
N 7
Ty, L - _
; -
I 1
: Frontend De_si&n I
I
\ !
\ /
A /
\ /
S 7’
~ .~ P -~

Yes, product design in system design interviews is a great place to start for a few reasons,

especially considering your multidisciplinary background as a software engineer, prototyper, and
technical artist. Here's why and how to approach it:

Why Start with Product Design in
System Design Interviews?

1. User-Centric Focus:

e Product design emphasizes solving real-world problems and aligning technical
decisions with user needs.


http://159.223.197.234/uploads/images/gallery/2024-12/systemdesignoverview.png

e Understanding the "why" behind the system provides clarity when designing the
"how".
2. Bridges Technical and Creative Roles:
e For a prototyper or technical artist, product design integrates creative goals with
technical implementation.
e It's an accessible entry point for understanding system design holistically.
3. Scales Well into System Design:
e Product design teaches you to think about high-level requirements and constraints,
which naturally leads into system design.
e For example, designing a feature like a "real-time chat system" helps you identify
key system design components (e.g., databases, APIs, load balancers).
4. Helps in Interviews:
e Many system design interviews incorporate product design aspects, asking you to
consider user requirements, scalability, and trade-offs.
e Practicing product design questions makes it easier to handle the ambiguity often
present in system design interviews.

How to Start with Product Design in
System Design Interviews

1. Understand the User Problem:
e Begin by asking clarifying questions about user needs, constraints, and goals.
e Example: If designing a photo-sharing app, ask:
o Who are the users? (Casual users? Professional photographers?)
o What features are essential? (Uploading? Sharing? Editing?)
o What are the system constraints? (Number of users? Device types?)
2. Define Functional and Non-Functional Requirements:
e Functional: Features the system must provide (e.g., upload photos, view galleries).
e Non-Functional: Performance, scalability, reliability, etc. (e.g., handling 1M users or
ensuring 99.9% uptime).
3. Break Down the System:
e Translate product features into technical components.
e Example for a photo-sharing app:
o Frontend: A web/mobile app for uploading and viewing photos.
o Backend: APIs for file uploads, metadata storage, and search.
o Database: Store photos, user information, and metadata.
o Infrastructure: CDN for fast image delivery.
4. Consider Trade-offs:
e Product design often involves trade-offs (e.qg., prioritizing speed vs. cost).
e Be prepared to discuss decisions like:



o Should we store images in the cloud or on a local server?
o How do we ensure security for user uploads?
5. Practice with Example Questions:
e Design a social media feed.
e Design a ride-sharing platform (like Uber).
e Design a video streaming service.
e Design an e-commerce search engine.

Best Resources to Get Started

Here are some curated resources for practicing product and system design:

Books:

e System Design Interview - An Insider’s Guide by Alex Xu: Covers common system
design interview questions with product design components.

e Designing Data-Intensive Applications by Martin Kleppmann: Focuses on building
scalable and reliable systems (a bit more advanced).

Platforms:

e Educative.io: Courses like "Grokking the System Design Interview" provide a structured
way to learn product/system design.

e Excalidraw: A tool for practicing and visually sketching system designs during
preparation.

Videos:

e YouTube channels like Tech Dummies and System Design Primer focus on real-world
examples of product and system design.

Mock Interviews:

e Practice mock interviews with friends or on platforms like Pramp or Interviewing.io.

How It Fits Into Your Role



e As a prototyper: Product design is crucial because you often need to quickly translate
abstract ideas into working prototypes while addressing real user needs.

e As a technical artist: It helps you bridge the gap between creative requirements (e.qg.,
animation or AR/VR systems) and technical implementation.

e As a software engineer: It sharpens your ability to identify and build scalable solutions
that align with business and user goals.

What’s Next?

Once comfortable with product design, dive deeper into system design fundamentals:

e Scalability (e.g., caching, load balancing).

e Databases (SQL vs. NoSQL, sharding, replication).

e APl design (REST, GraphQL, gRPC).

e Advanced topics (microservices, event-driven systems).

This progression ensures a solid foundation while making the learning process manageable and
effective. Let me know if you want tailored examples or help with specific product design
scenarios!



Frontend, Backend,
Infrastructure



