
10_Sorting and
Searching
Quick, Merge, Radix, Bucket

Summary
QuickSort
Merge Sort
Radix Sort
Bucket Sort

Summary
Most Important Sorting
Knowledge
As a Technical Artist, focus on:

1. Why Sorting Matters:
GPU performance optimization (batching, transparency sorting).
Animation frame ordering.
Texture atlas generation.

2. Where Sorting Is Used:
Draw Call Optimization: Group by material, shader, or texture.
Transparency Rendering: Z-depth sorting.
LOD Management: Sort by distance to the camera.
Animation Playback: Sort events or keyframes by time.

3. Key Algorithms:
QuickSort: Fast general-purpose sorting.
MergeSort: Stable sort for animations and draw calls.
Radix Sort: Ultra-fast for IDs, depth sorting, or LOD.
Bucket Sort: Great for spatial or depth-based sorting.

Quick Summary Table
Algorithm Best For Time Complexity Stable?

QuickSort General-purpose, large
datasets.

O(N log N) No

MergeSort Sorting animations, draw
calls stably.

O(N log N) Yes

Radix Sort Sorting IDs, LOD distances,
fixed data.

O(N) Yes

Bucket Sort Sorting spatial or depth-
based data.

O(N) (best case) Yes

Example of Stable vs. Unstable
Sort
Imagine sorting a list of objects by age (primary key), where objects also have a name (secondary
property):

Original List (Unsorted):

yaml
Copy code
[{Age: 10, Name: "A"}, {Age: 10, Name: "B"}, {Age: 8, Name: "C"}]

Stable Sort
A stable sorting algorithm preserves the relative order of equal elements:

Both elements with Age 10 ("A" and "B") keep their original order.

Result (After Stable Sort):

yaml
Copy code
[{Age: 8, Name: "C"}, {Age: 10, Name: "A"}, {Age: 10, Name: "B"}]

Unstable Sort
An unstable sorting algorithm does not guarantee the original order of equal elements:

The relative order of elements with Age 10 ("A" and "B") may change.

Result (After Unstable Sort):

yaml
Copy code
[{Age: 8, Name: "C"}, {Age: 10, Name: "B"}, {Age: 10, Name: "A"}] <-- Order swapped

Why Does Stability Matter?

Stability is critical when:

1. Sorting Based on Multiple Criteria:
You first sort by one key, then by another. Stability ensures the second sort doesn't
disrupt the order established by the first.

Example: Sorting by age, then by name:

First sort: By age → Stable sort keeps relative name order for same ages.
Second sort: By name → Only elements with equal age are sorted by name.

2. Preserving Order:
In animation systems or rendering pipelines, stability ensures consistent results
when sorting objects with identical properties.

3. Debugging:
Stable algorithms provide predictable behavior, making it easier to debug sorting
issues.

QuickSort
1. QuickSort

Why Important: QuickSort is one of the fastest general-purpose sorting algorithms for
large datasets. It works in-place and has an average complexity of O(N log N).
Where It’s Useful:

Sorting large datasets like vertex buffers, meshes, or texture indices.
Preparing data for draw calls: Sorting objects by material, shader, or texture to
minimize state changes on the GPU.
Sorting elements for visibility or depth-sorting in transparent objects.

Example:

Unity and Unreal sort renderable objects back-to-front or front-to-back using QuickSort
for transparency or depth optimization.

Merge Sort
2. MergeSort

Why Important: MergeSort is stable (preserves the relative order of equal elements) and
handles large datasets efficiently with O(N log N) time complexity.
Where It’s Useful:

Sorting animations or frames by timestamps.
Material batching: Sort objects by material to group draw calls efficiently.
Texture Packing: Arranging UV data or textures for optimal atlas generation.

Why Choose MergeSort:

It’s stable, which makes it ideal for sorting when the relative order of objects matters
(e.g., sorting multiple attributes like texture ID and distance).

Radix Sort
3. Radix Sort

Why Important: Radix Sort is a non-comparative sorting algorithm and is faster than
QuickSort for integers or fixed-length data types (e.g., IDs, bitmasks). Its complexity is
O(N) for small key ranges.
Where It’s Useful:

Sorting IDs for mesh vertices, bones, or texture indices.
Animation Frames: Sorting animation data with frame indices for playback.
Sorting LOD levels (Level of Detail) or objects by distance efficiently.

Why Radix Sort?:

It’s very fast for fixed-size keys (integers or floats converted into fixed-size keys), which
are common in graphics.

Bucket Sort
4. Bucket Sort

Why Important: Bucket Sort works well when the data is uniformly distributed and falls
within a known range.
Where It’s Useful:

Depth Sorting: Sort objects by their Z-depth for transparency.
Light Probes or Particles: Sorting objects into spatial buckets for rendering
optimizations.
Sorting textures or UV coordinates into regions when packing atlases.

Why Bucket Sort?:

Very fast O(N) sorting when data can be grouped into buckets (common in spatial
optimizations).

