
04_Functional Programming
Functional programming (FP) is a programming paradigm focused on writing software by
composing and applying pure functions, avoiding shared state, and minimizing side effects. It's
particularly well-suited for mathematical computations, data transformations, and scenarios
requiring parallel processing.

Key Principles of Functional
Programming
1. Pure Functions

A pure function is a function where:
The output depends only on its inputs.
It has no side effects (doesn’t modify external state).

Example:

Not Pure (has side effects):

Why It Matters:

Pure function
def add(a, b):
 return a + b

result = 0

def add(a, b):
 global result
 result = a + b
 return result

Easier to debug: The function's behavior is predictable and testable.
Parallelization: Pure functions can be executed independently.

2. Immutability
Data is not modified after it is created.
Instead of changing data, new data structures are created.

Example:

Why It Matters:
Reduces bugs caused by unexpected state changes.
Makes reasoning about program behavior easier.

3. Higher-Order Functions
Functions that take other functions as arguments or return functions.

Example:

Why It Matters:
Encourages reusability and modularity by composing small, reusable functions.

4. First-Class Functions

Immutable transformation
numbers = [1, 2, 3]
new_numbers = [x * 2 for x in numbers]

Map applies a function to each element
numbers = [1, 2, 3, 4]
squared = map(lambda x: x ** 2, numbers)
print(list(squared)) # Output: [1, 4, 9, 16]

Functions are treated like data: They can be passed as arguments, returned from other
functions, and assigned to variables.

Example:

Why It Matters:
Enables concise and expressive code.

5. Recursion
Instead of loops, functional programming often uses recursion to repeat operations.

Example (factorial with recursion):

Why It Matters:
Recursion avoids mutable state and aligns with the FP principle of immutability.

6. Lazy Evaluation
Computation is deferred until the result is actually needed.
Common in FP languages like Haskell, but supported in Python via generators.

def greet(name):
 return f"Hello, {name}!"

def execute(func, arg):
 return func(arg)

print(execute(greet, "Alice")) # Output: "Hello, Alice!"

def factorial(n):
 return 1 if n == 0 else n * factorial(n - 1)

print(factorial(5)) # Output: 120

Example:

Why It Matters:
Optimizes performance by avoiding unnecessary computations.
Handles large or infinite data structures efficiently.

7. Function Composition
Combine smaller functions to build more complex functions.

Example:

Why It Matters:
Encourages modular and reusable code.

Lazy evaluation with a generator
def generate_numbers():
 for i in range(10):
 yield i

numbers = generate_numbers()
for num in numbers:
 print(num) # Generates each number one at a time

def double(x):
 return x * 2

def square(x):
 return x ** 2

def compose(f, g):
 return lambda x: f(g(x))

double_then_square = compose(square, double)
print(double_then_square(3)) # Output: 36

Advantages of Functional
Programming

1. Predictable Code:
Pure functions ensure the output is consistent, making debugging easier.

2. Concurrency and Parallelism:
No shared state or side effects mean functions can run independently.

3. Modularity:
Encourages writing small, reusable functions that can be combined in powerful ways.

4. Testability:
Pure functions are easy to test as they don’t depend on external states.

5. Immutable Data:
Reduces bugs caused by unexpected changes to shared data.

Disadvantages of Functional
Programming

1. Learning Curve:
The paradigm requires a shift in thinking for those used to procedural or object-
oriented programming.

2. Performance:
Immutable data structures can sometimes lead to higher memory usage and slower
performance compared to mutable ones.

3. Debugging Recursion:
Heavy reliance on recursion can lead to stack overflow errors if not optimized (e.g.,
via tail recursion).

4. Limited Libraries:
Some libraries or APIs are built with OOP in mind and may not work well with FP.

Functional Programming in
Popular Languages
Functional-First Languages:

Haskell: Purely functional, lazy evaluation.
Erlang: High concurrency and reliability.

Functional Features in Multi-
Paradigm Languages:

1. Python:
Supports functional constructs like map , filter , lambda , and comprehensions.
Example:

nums = [1, 2, 3, 4]
squares = list(map(lambda x: x ** 2, nums))
print(squares) # Output: [1, 4, 9, 16]

2. JavaScript:
Functional tools like reduce , map , and filter .
Example:

const nums = [1, 2, 3, 4];
const squares = nums.map(x => x ** 2);
console.log(squares); // Output: [1, 4, 9, 16]

3. C++:
Lambdas and standard functional algorithms in the STL (std::transform ,
std::accumulate).
Example:

#include <vector>
#include <algorithm>
#include <iostream>

int main() {

 std::vector<int> nums = {1, 2, 3, 4};
 std::transform(nums.begin(), nums.end(), nums.begin(), [](int x) { return x * x; });
 for (int n : nums) std::cout << n << " "; // Output: 1 4 9 16
}

Applications of Functional
Programming

1. Graphics Programming:
Procedural texture generation and transformations (e.g., GLSL shaders).
Functional paradigms simplify operations on immutable data like pixels or vertex
buffers.

2. Data Processing:
Big data frameworks like Apache Spark rely on FP for parallelism and immutability.

3. Game Development:
Functional constructs help build procedural systems like terrain generation or AI
logic.

4. Concurrency:
Functional programming is ideal for writing highly concurrent and parallel systems
due to immutability.

Would you like more hands-on examples in Python or another language, or a deeper dive into
functional constructs? ��

Revision #1
Created 29 December 2024 22:39:52 by victor
Updated 29 December 2024 22:40:56 by victor

