04 Functional Programming

Functional programming (FP) is a programming paradigm focused on writing software by
composing and applying pure functions, avoiding shared state, and minimizing side effects. It's
particularly well-suited for mathematical computations, data transformations, and scenarios
requiring parallel processing.

Key Principles of Functional
Programming

1. Pure Functions

e A pure function is a function where:
o The output depends only on its inputs.
o It has no side effects (doesn’t modify external state).

Example:

Pure function
def add(a, b):

returna + b

e Not Pure (has side effects):

result =0

def add(a, b):
global result
result=a+b

return result

Why It Matters:

o Easier to debug: The function's behavior is predictable and testable.
e Parallelization: Pure functions can be executed independently.

2. Immutability

o Data is not modified after it is created.
e Instead of changing data, new data structures are created.

Example:

Immutable transformation
numbers = [1, 2, 3]

new_numbers = [x * 2 for x in numbers]

Why It Matters:

e Reduces bugs caused by unexpected state changes.
e Makes reasoning about program behavior easier.

3. Higher-Order Functions

e Functions that take other functions as arguments or return functions.

Example:
Map applies a function to each element
numbers = [1, 2, 3, 4]

squared = map(lambda x: x ** 2, numbers)

print(list(squared)) # Output: [1, 4, 9, 16]

Why It Matters:

e Encourages reusability and modularity by composing small, reusable functions.

4. First-Class Functions

e Functions are treated like data: They can be passed as arguments, returned from other
functions, and assigned to variables.

Example:

def greet(name):

return f"Hello, {name}!"

def execute(func, arg):

return func(arg)

print(execute(greet, "Alice")) # Output: "Hello, Alice!"

Why It Matters:

e Enables concise and expressive code.

5. Recursion

e Instead of loops, functional programming often uses recursion to repeat operations.

Example (factorial with recursion):

def factorial(n):

return 1 if n == 0 else n * factorial(n - 1)

print(factorial(5)) # Output: 120

Why It Matters:

e Recursion avoids mutable state and aligns with the FP principle of immutability.

6. Lazy Evaluation

e Computation is deferred until the result is actually needed.
e Common in FP languages like Haskell, but supported in Python via generators.

Example:

Lazy evaluation with a generator
def generate_numbers():
foriin range(10):

yield i
numbers = generate_numbers()

for num in numbers:

print(hnum) # Generates each number one at a time

Why It Matters:

e Optimizes performance by avoiding unnecessary computations.
e Handles large or infinite data structures efficiently.

7. Function Composition

e Combine smaller functions to build more complex functions.

Example:

def double(x):

return x * 2

def square(x):

return x ** 2

def compose(f, g):

return lambda x: f(g(x))

double_then_square = compose(square, double)

print(double_then_square(3)) # Output: 36

Why It Matters:

e Encourages modular and reusable code.

Advantages of Functional
Programming

1. Predictable Code:
e Pure functions ensure the output is consistent, making debugging easier.
2. Concurrency and Parallelism:
e No shared state or side effects mean functions can run independently.
3. Modularity:
e Encourages writing small, reusable functions that can be combined in powerful ways.
4. Testability:
e Pure functions are easy to test as they don’t depend on external states.
5. Immutable Data:
e Reduces bugs caused by unexpected changes to shared data.

Disadvantages of Functional
Programming

1. Learning Curve:
e The paradigm requires a shift in thinking for those used to procedural or object-
oriented programming.
. Performance:
e Immutable data structures can sometimes lead to higher memory usage and slower
performance compared to mutable ones.
. Debugging Recursion:
e Heavy reliance on recursion can lead to stack overflow errors if not optimized (e.g.,
via tail recursion).
4. Limited Libraries:
e Some libraries or APIs are built with OOP in mind and may not work well with FP.

N

w

Functional Programming in
Popular Languages

Functional-First Languages:

e Haskell: Purely functional, lazy evaluation.
e Erlang: High concurrency and reliability.

Functional Features in Multi-
Paradigm Languages:

1. Python:
e Supports functional constructs like map, filter, lambda , and comprehensions.
e Example:

nums = [1, 2, 3, 4]
squares = list(map(lambda x: x ** 2, nums))

print(squares) # Output: [1, 4, 9, 16]

2. JavaScript:
e Functional tools like reduce, map, and filter.
e Example:

const nums =[1, 2, 3, 4];
const squares = nums.map(x => x ** 2);

console.log(squares); // Output: [1, 4, 9, 16]

3. C++:
e Lambdas and standard functional algorithms in the STL (std::transform ,
std::accumulate).
e Example:

#include <vector>
#include <algorithm>

#include <iostream>

int main() {

std::vector<int> nums = {1, 2, 3, 4};
std::transform(nums.begin(), nums.end(), nums.begin(), [1(int x) { return x * x; });

for (int n : nums) std::cout << n <<""; //Output: 149 16

Applications of Functional
Programming

1. Graphics Programming:
e Procedural texture generation and transformations (e.g., GLSL shaders).
e Functional paradigms simplify operations on immutable data like pixels or vertex
buffers.
2. Data Processing:
e Big data frameworks like Apache Spark rely on FP for parallelism and immutability.
3. Game Development:
e Functional constructs help build procedural systems like terrain generation or Al
logic.
4. Concurrency:
e Functional programming is ideal for writing highly concurrent and parallel systems
due to immutability.

Would you like more hands-on examples in Python or another language, or a deeper dive into
functional constructs? [T]

Revision #1
Created 29 December 2024 22:39:52 by victor
Updated 29 December 2024 22:40:56 by victor

