
01_Programming
Paradigms

Event-Driven Programming:
Essential for tool and UI development (e.g., PyQt, AR Foundation).

Object-Oriented Programming (OOP):
Helps with modularity and reusability in tools, game objects, and pipelines.

Declarative Programming:
Useful for shaders, procedural workflows, and material systems.

Functional Programming:
Great for mathematical operations in shaders and procedural generation.

Data-Driven Programming:
Ideal for tool and pipeline flexibility

01_Event-Driven Programming
02_Object Oriented Programming
03_Declarative Programming
04_Functional Programming

01_Event-Driven
Programming
Event-driven programming is a programming paradigm where the program reacts to events,
such as user actions, sensor inputs, or system-generated signals. Instead of following a strict
sequence of commands, the program listens for events and responds when they occur.

Core Concepts
1. Events

Actions or occurrences that the program can respond to.
Examples: Button clicks, keyboard input, mouse movement.

2. Event Handlers
Functions or methods that execute in response to events.

3. Event Loop
A continuous loop that listens for events and triggers their respective handlers when
events occur.

Key Components
1. Basic Event-Driven Program
This example demonstrates a simple event-driven system with custom events and handlers.

Output:

2. Keyboard Input Event Handling
Using Python's built-in keyboard library to respond to keypresses.

Simple Event-Driven Example
class Event:
 def __init__(self, name):
 self.name = name

Event handlers
def handle_event_1(event):
 print(f"Handling event: {event.name}")

def handle_event_2(event):
 print(f"Handling another event: {event.name}")

Main event loop
def event_loop(events):
 for event in events:
 if event.name == "event_1":
 handle_event_1(event)
 elif event.name == "event_2":
 handle_event_2(event)

Example usage
events = [Event("event_1"), Event("event_2"), Event("event_1")]
event_loop(events)

Handling event: event_1
Handling another event: event_2
Handling event: event_1

import keyboard # Install with: pip install keyboard

def on_key_event(event):

What Happens:
Whenever a key is pressed, the on_key_event function is executed.

3. Timer-Based Event Handling
This example uses the threading library to trigger events based on a timer.

What Happens:
The program triggers on_timer_event every 2 seconds.

4. Event Handling with PyQt

 print(f"Key {event.name} pressed!")

Attach the event handler
keyboard.on_press(on_key_event)

Keep the program running to listen for events
print("Press any key (Ctrl+C to exit)")
keyboard.wait() # Blocks and listens for events

import threading

Event handler
def on_timer_event():
 print("Timer event triggered!")

Set up a repeating timer
def start_timer():
 threading.Timer(2.0, start_timer).start() # Triggers every 2 seconds
 on_timer_event()

start_timer()

PyQt is another popular library for GUI development. It relies on signals and slots for event
handling.

What Happens:
Clicking the button emits a signal, triggering the on_button_click handler to update the
label.

5. AR Foundation Plane
Detection Event
For AR Foundation, use ARPlaneManager to detect planes in an AR session.

from PyQt5.QtWidgets import QApplication, QPushButton, QLabel, QVBoxLayout, QWidget

def on_button_click():
 label.setText("Button clicked!")

app = QApplication([])
window = QWidget()
layout = QVBoxLayout()

label = QLabel("Click the button!")
button = QPushButton("Click Me")
button.clicked.connect(on_button_click) # Connect signal to handler

layout.addWidget(label)
layout.addWidget(button)
window.setLayout(layout)
window.show()
app.exec_()

using UnityEngine;
using UnityEngine.XR.ARFoundation;

public class ARPlaneDetection : MonoBehaviour
{

What Happens:
Event: Plane detection event in AR Foundation.
Handler: OnPlanesChanged is executed whenever a plane is added, updated, or removed.

Best Practices for Event-Driven
Programming in Unity

1. Use Built-in Events Where Possible:
Leverage Unity's UnityEvent , UI events, and physics events instead of reinventing the
wheel.

2. Avoid Overusing Global Events:

 [SerializeField] private ARPlaneManager planeManager;

 void OnEnable()
 {
 planeManager.planesChanged += OnPlanesChanged;
 }

 void OnDisable()
 {
 planeManager.planesChanged -= OnPlanesChanged;
 }

 private void OnPlanesChanged(ARPlanesChangedEventArgs args)
 {
 foreach (var plane in args.added)
 {
 Debug.Log($"Plane added: {plane.trackableId}");
 }
 }
}

Delegate-based or static events are powerful but can lead to tight coupling and
difficulty debugging.

3. Unsubscribe When Done:
Always unsubscribe from events to avoid memory leaks or unintended behavior.

void OnDisable()
{
 myButton.onClick.RemoveListener(OnButtonClick);
}

4. Debugging:
Use logs or breakpoints to verify that your events are being triggered and handled
correctly.

5. Combine with Coroutines:
For delayed or time-based responses to events, pair event handlers with Unity's
coroutines.

Unsubscribing from events in Unity (or in C# in general) applies only to the specific listeners
(event handlers) you explicitly unsubscribe. It does not globally remove all listeners from the event.

Here’s a breakdown:

How Event Unsubscription
Works
1. Only Affects Subscribed Handlers
When you unsubscribe from an event, you only remove the specific handler (method or delegate)
you subscribed to it. Other handlers subscribed to the same event remain unaffected.

Example:

using System;
using UnityEngine;

public class EventUnsubscribeExample : MonoBehaviour
{

Output:

The first invocation calls both HandlerOne and HandlerTwo .
After unsubscribing HandlerOne , only HandlerTwo is called in the second invocation.

 public static Action OnCustomEvent;

 void Start()
 {
 // Subscribe two different handlers to the same event
 OnCustomEvent += HandlerOne;
 OnCustomEvent += HandlerTwo;

 // Invoke the event
 OnCustomEvent?.Invoke();

 // Unsubscribe only HandlerOne
 OnCustomEvent -= HandlerOne;

 // Invoke the event again
 OnCustomEvent?.Invoke();
 }

 void HandlerOne()
 {
 Debug.Log("Handler One called.");
 }

 void HandlerTwo()
 {
 Debug.Log("Handler Two called.");
 }
}

Handler One called.
Handler Two called.
Handler Two called.

2. Why Unsubscription Is
Important
Memory Leaks
If an object subscribes to an event but is not unsubscribed before the object is destroyed, it may
cause memory leaks because the event keeps a reference to the object, preventing garbage
collection.

Example:

Avoiding Unexpected Behavior
If you don’t unsubscribe properly, the event may trigger a handler for an object that is no longer
relevant or expected to respond.

3. Applying to Unity Events
For Unity's UnityEvent system, you must unsubscribe the same way to remove a specific listener.

Example:

void OnEnable()
{
 SomeEventManager.OnGameEvent += HandleGameEvent;
}

void OnDisable()
{
 SomeEventManager.OnGameEvent -= HandleGameEvent; // Unsubscribe to prevent memory leaks
}

using UnityEngine;
using UnityEngine.Events;

4. Common Mistakes
A. Unsubscribing from Non-
Subscribed Handlers
If you try to unsubscribe a handler that isn’t subscribed, nothing happens. C# handles this
gracefully without throwing an error.

public class UnityEventExample : MonoBehaviour
{
 public UnityEvent myUnityEvent;

 void Start()
 {
 myUnityEvent.AddListener(EventHandlerOne);
 myUnityEvent.AddListener(EventHandlerTwo);

 myUnityEvent.Invoke(); // Calls both handlers

 myUnityEvent.RemoveListener(EventHandlerOne); // Unsubscribe EventHandlerOne

 myUnityEvent.Invoke(); // Calls only EventHandlerTwo
 }

 void EventHandlerOne()
 {
 Debug.Log("EventHandlerOne triggered.");
 }

 void EventHandlerTwo()
 {
 Debug.Log("EventHandlerTwo triggered.");
 }
}

Example:

5. Does This Apply to All
Events?
Yes, the principle of unsubscribing applies to all types of events:

Unity Built-In Events: e.g., Button.onClick , Input , collision events.
Custom Events: Events you create using Action , UnityEvent , or delegate .

You must explicitly unsubscribe only the handlers you no longer need.

Best Practices for
Unsubscribing

1. Always Unsubscribe When Appropriate:
Use OnDisable or OnDestroy to clean up event subscriptions.

2. Track Subscriptions:
Keep a clear record of what you’ve subscribed to and ensure they’re unsubscribed
when no longer needed.

3. Use Weak References if Necessary:
For advanced use cases, consider weak references to avoid holding strong
references to objects, preventing memory leaks.

4. Avoid Excessive Global Subscriptions:
Too many global events can make debugging complex. Use scoped or localized
events where possible.

Would you like further guidance on managing event subscriptions or specific examples in Unity? ��

OnCustomEvent -= NonExistentHandler; // No error, but nothing is removed

Building a Simple Event-Driven
Framework
Here’s how you can build a small event-driven framework in Python:

Output:

class EventManager:
 def __init__(self):
 self.listeners = {}

 def subscribe(self, event_name, handler):
 if event_name not in self.listeners:
 self.listeners[event_name] = []
 self.listeners[event_name].append(handler)

 def emit(self, event_name, *args, **kwargs):
 if event_name in self.listeners:
 for handler in self.listeners[event_name]:
 handler(*args, **kwargs)

Example usage
def on_custom_event(data):
 print(f"Custom event received with data: {data}")

event_manager = EventManager()
event_manager.subscribe("custom_event", on_custom_event)
event_manager.emit("custom_event", data="Hello, World!")

Advantages of Event-Driven
Programming

1. Modularity:
Event handlers can be written as independent, reusable functions or modules.

2. Responsiveness:
Ideal for interactive applications where user input or external events dictate program
behavior.

3. Scalability:
Can easily add more event types or handlers without major changes to the main
program.

Challenges in Event-Driven
Programming

1. Debugging:
The flow of execution is non-linear, making it harder to trace bugs.

2. Performance:
Poorly designed event handlers or excessive events can degrade performance.

3. State Management:
Ensuring consistency across multiple event handlers requires careful planning.

Would you like more advanced examples or help applying event-driven programming in a specific
context, like AR, gaming, or data pipelines? ��

Custom event received with data: Hello, World!

02_Object Oriented
Programming

03_Declarative Programming

04_Functional Programming
Functional programming (FP) is a programming paradigm focused on writing software by
composing and applying pure functions, avoiding shared state, and minimizing side effects. It's
particularly well-suited for mathematical computations, data transformations, and scenarios
requiring parallel processing.

Key Principles of Functional
Programming
1. Pure Functions

A pure function is a function where:
The output depends only on its inputs.
It has no side effects (doesn’t modify external state).

Example:

Not Pure (has side effects):

Why It Matters:

Pure function
def add(a, b):
 return a + b

result = 0

def add(a, b):
 global result
 result = a + b
 return result

Easier to debug: The function's behavior is predictable and testable.
Parallelization: Pure functions can be executed independently.

2. Immutability
Data is not modified after it is created.
Instead of changing data, new data structures are created.

Example:

Why It Matters:
Reduces bugs caused by unexpected state changes.
Makes reasoning about program behavior easier.

3. Higher-Order Functions
Functions that take other functions as arguments or return functions.

Example:

Why It Matters:
Encourages reusability and modularity by composing small, reusable functions.

4. First-Class Functions

Immutable transformation
numbers = [1, 2, 3]
new_numbers = [x * 2 for x in numbers]

Map applies a function to each element
numbers = [1, 2, 3, 4]
squared = map(lambda x: x ** 2, numbers)
print(list(squared)) # Output: [1, 4, 9, 16]

Functions are treated like data: They can be passed as arguments, returned from other
functions, and assigned to variables.

Example:

Why It Matters:
Enables concise and expressive code.

5. Recursion
Instead of loops, functional programming often uses recursion to repeat operations.

Example (factorial with recursion):

Why It Matters:
Recursion avoids mutable state and aligns with the FP principle of immutability.

6. Lazy Evaluation
Computation is deferred until the result is actually needed.
Common in FP languages like Haskell, but supported in Python via generators.

def greet(name):
 return f"Hello, {name}!"

def execute(func, arg):
 return func(arg)

print(execute(greet, "Alice")) # Output: "Hello, Alice!"

def factorial(n):
 return 1 if n == 0 else n * factorial(n - 1)

print(factorial(5)) # Output: 120

Example:

Why It Matters:
Optimizes performance by avoiding unnecessary computations.
Handles large or infinite data structures efficiently.

7. Function Composition
Combine smaller functions to build more complex functions.

Example:

Why It Matters:
Encourages modular and reusable code.

Lazy evaluation with a generator
def generate_numbers():
 for i in range(10):
 yield i

numbers = generate_numbers()
for num in numbers:
 print(num) # Generates each number one at a time

def double(x):
 return x * 2

def square(x):
 return x ** 2

def compose(f, g):
 return lambda x: f(g(x))

double_then_square = compose(square, double)
print(double_then_square(3)) # Output: 36

Advantages of Functional
Programming

1. Predictable Code:
Pure functions ensure the output is consistent, making debugging easier.

2. Concurrency and Parallelism:
No shared state or side effects mean functions can run independently.

3. Modularity:
Encourages writing small, reusable functions that can be combined in powerful ways.

4. Testability:
Pure functions are easy to test as they don’t depend on external states.

5. Immutable Data:
Reduces bugs caused by unexpected changes to shared data.

Disadvantages of Functional
Programming

1. Learning Curve:
The paradigm requires a shift in thinking for those used to procedural or object-
oriented programming.

2. Performance:
Immutable data structures can sometimes lead to higher memory usage and slower
performance compared to mutable ones.

3. Debugging Recursion:
Heavy reliance on recursion can lead to stack overflow errors if not optimized (e.g.,
via tail recursion).

4. Limited Libraries:
Some libraries or APIs are built with OOP in mind and may not work well with FP.

Functional Programming in
Popular Languages
Functional-First Languages:

Haskell: Purely functional, lazy evaluation.
Erlang: High concurrency and reliability.

Functional Features in Multi-
Paradigm Languages:

1. Python:
Supports functional constructs like map , filter , lambda , and comprehensions.
Example:

nums = [1, 2, 3, 4]
squares = list(map(lambda x: x ** 2, nums))
print(squares) # Output: [1, 4, 9, 16]

2. JavaScript:
Functional tools like reduce , map , and filter .
Example:

const nums = [1, 2, 3, 4];
const squares = nums.map(x => x ** 2);
console.log(squares); // Output: [1, 4, 9, 16]

3. C++:
Lambdas and standard functional algorithms in the STL (std::transform ,
std::accumulate).
Example:

#include <vector>
#include <algorithm>
#include <iostream>

int main() {

 std::vector<int> nums = {1, 2, 3, 4};
 std::transform(nums.begin(), nums.end(), nums.begin(), [](int x) { return x * x; });
 for (int n : nums) std::cout << n << " "; // Output: 1 4 9 16
}

Applications of Functional
Programming

1. Graphics Programming:
Procedural texture generation and transformations (e.g., GLSL shaders).
Functional paradigms simplify operations on immutable data like pixels or vertex
buffers.

2. Data Processing:
Big data frameworks like Apache Spark rely on FP for parallelism and immutability.

3. Game Development:
Functional constructs help build procedural systems like terrain generation or AI
logic.

4. Concurrency:
Functional programming is ideal for writing highly concurrent and parallel systems
due to immutability.

Would you like more hands-on examples in Python or another language, or a deeper dive into
functional constructs? ��

