
Brute Force
The brute force approach tries every possible combination to check for a solution, without
leveraging any special properties or optimizations of the data (such as sorted order). Typically
involves:

Nested loops
Outer Loop traverses the array for the first element of the pair
Inner Loop traverses the rest of the array to find second element

Recursion

Drawbacks:

Time Complexity: Typically O(n²) or slower, impractical for large datasets.
Redundancy: Many computations are repeated unnecessarily

Need to know: Nested For Loops , Range , Len

def brute_force_two_sum(nums, target):
 # Iterate through each element in the list
 for i in range(len(nums)):
 # For each element, check every other element that comes after it
 for j in range(i + 1, len(nums)):
 # Check if the current pair sums to the target
 if nums[i] + nums[j] == target:
 return (i, j) # Return the indices as a tuple
 # If no pair is found that adds up to the target, return None
 return None

Example usage:

http://159.223.197.234/uploads/images/gallery/2025-02/bruteforce-twosum.gif

Great question — no, nested for loops in Python don't always have to use range() . It totally
depends on what you're looping over.

Let’s break this down:

✅ When You Use range() in Nested
Loops
You use range() when you're looping over indexes, usually for:

Arrays
Matrices
Iterations with index math

✅ When You Don’t Need range()
You can also loop directly over values — nested or not — when index access isn't needed.

Example: Nested Lists

nums = [2, 7, 11, 15]
target = 9

result = brute_force_two_sum(nums, target)
if result:
 print("Pair found at indices:", result)
else:
 print("No pair found that adds up to the target.")

for i in range(len(matrix)):
 for j in range(len(matrix[0])):
 print(matrix[i][j])

for row in matrix:
 for val in row:
 print(val)

Example: Nested Dictionaries

Example: In Tech Art (Blender)

�� When to Use range() vs Direct Loop
Use Case Use range() Direct Loop (for item in list)

You need the index ✅ ✅ Yes ❌ No

You only care about the value ❌ No ✅ Yes

You're modifying a list in-place ✅ Often ❌ Risky

So nested loops can use range() , but they only should when you need an index or are doing
some kind of math-based traversal (e.g., comparing elements, jumping steps, etc).

Want me to show a nested loop example with range() from a LeetCode matrix problem or a nested
asset traversal from a DCC pipeline?

for category, items in asset_dict.items():
 for item in items:
 print(f"{category}: {item}")

for obj in bpy.data.objects:
 for modifier in obj.modifiers:
 print(f"{obj.name} has modifier {modifier.name}")

Revision #6
Created 2 January 2025 22:30:38 by victor
Updated 8 April 2025 22:54:19 by victor

