
Brute Force
The brute force approach tries every possible combination to check for a solution, without
leveraging any special properties or optimizations of the data (such as sorted order). Typically
involves: 

Nested loops
Outer Loop traverses the array for the first element of the pair
Inner Loop traverses the rest of the array to find second element 

Recursion 

Drawbacks:

Time Complexity: Typically O(n²) or slower, impractical for large datasets.
Redundancy: Many computations are repeated unnecessarily

def brute_force_two_sum(nums, target):
    # Iterate through each element in the list
    for i in range(len(nums)):
        # For each element, check every other element that comes after it
        for j in range(i + 1, len(nums)):
            # Check if the current pair sums to the target
            if nums[i] + nums[j] == target:
                return (i, j)  # Return the indices as a tuple
    # If no pair is found that adds up to the target, return None
    return None

# Example usage:
nums = [2, 7, 11, 15]

http://159.223.197.234/uploads/images/gallery/2025-02/bruteforce-twosum.gif


target = 9

result = brute_force_two_sum(nums, target)
if result:
    print("Pair found at indices:", result)
else:
    print("No pair found that adds up to the target.")

Revision #4
Created 2 January 2025 22:30:38 by victor
Updated 9 February 2025 23:29:43 by victor


