
01_Sequences
Arrays and Strings.

https://www.techinterviewhandbook.org/algorithms/array/

Array Cheatsheet
01_Arrays

Brute Force
Two Pointers: Inward Traversal
Two Pointers: Unidirectional Traversal
Two Pointers: Stage Traversal
Sliding Window: Fixed
Sliding Window: Dynamic
Traversing Array From The Right
Sorting The Array
Index as a Hash Key

String Cheatsheet
02_Strings

Counting Characters in a String
String of Unique Characters
Anagram
Palindrome

https://www.techinterviewhandbook.org/algorithms/array/

Array Cheatsheet
Arrays
Arrays hold values of the same type at contiguous memory locations. In an array, we're usually
concerned about two things - the position/index of an element and the element itself.

Advantages

Store multiple elements of the same type with one single variable name
Accessing elements is fast (o(1)) as long as you have the index, as opposed to linked lists
where you have to traverse from the head (o(n)).

Disadvantages

Addition and removal of elements in the middle of an array is slow (o(n)) because the
remaining elements need to be shifted to accommodate the new/missing element.

An exception to this is if the position to be inserted/removed is at the end of the
array (o(1)).

It cannot alter its size after initialization.
If an insertion causes the total number of elements to exceed the size, a new array
has to be allocated and the existing elements have to be copied over.
The act of creating a new array and transferring elements over takes O(n) time.

Common terms​
Subarray - A range of contiguous values within an array.

Example: given an array [2, 3, 6, 1, 5, 4] , [3, 6, 1] is a subarray while [3, 1, 5] is not a
subarray.

Subsequence - A sequence that can be derived from the given sequence by deleting some
or no elements without changing the order of the remaining elements.

Example: given an array [2, 3, 6, 1, 5, 4] , [3, 1, 5] is a subsequence but [3, 5, 1] is not
a subsequence.

Things to look out for during interviews​
Clarify if there are duplicate values in the array. Would the presence of duplicate values
affect the answer? Does it make the question simpler or harder?
When using an index to iterate through array elements, be careful not to go out of
bounds.

https://www.techinterviewhandbook.org/algorithms/array/#common-terms
https://www.techinterviewhandbook.org/algorithms/array/#things-to-look-out-for-during-interviews

Be mindful about slicing or concatenating arrays in your code. Typically, slicing and
concatenating arrays would take O(n) time. Use start and end indices to demarcate a
subarray/range where possible.

Corner Cases​
Empty sequence
Sequence with 1 or 2 elements
Sequence with repeated elements
Duplicated values in the sequence

Time Complexity​
Operation Big-O Note

Access O(1)

Search O(n)

Search (sorted array) O(log(n))

Insert O(n) Insertion would require shifting all the
subsequent elements to the right by
one and that takes O(n)

Insert (at the end) O(1) Special case of insertion where no
other element needs to be shifted

Remove O(n) Removal would require shifting all the
subsequent elements to the left by
one and that takes O(n)

Remove (at the end) O(1) Special case of removal where no
other element needs to be

Resource

Array in Data Structure: What is, Arrays Operations [Examples]

https://www.techinterviewhandbook.org/algorithms/array/#corner-cases
https://www.techinterviewhandbook.org/algorithms/array/#corner-cases
https://www.guru99.com/array-data-structure.html

01_Arrays

01_Arrays

Brute Force
The brute force approach tries every possible combination to check for a solution, without
leveraging any special properties or optimizations of the data (such as sorted order). Typically
involves:

Nested loops
Outer Loop traverses the array for the first element of the pair
Inner Loop traverses the rest of the array to find second element

Recursion

Drawbacks:

Time Complexity: Typically O(n²) or slower, impractical for large datasets.
Redundancy: Many computations are repeated unnecessarily

def brute_force_two_sum(nums, target):
 # Iterate through each element in the list
 for i in range(len(nums)):
 # For each element, check every other element that comes after it
 for j in range(i + 1, len(nums)):
 # Check if the current pair sums to the target
 if nums[i] + nums[j] == target:
 return (i, j) # Return the indices as a tuple
 # If no pair is found that adds up to the target, return None
 return None

Example usage:

http://159.223.197.234/uploads/images/gallery/2025-02/bruteforce-twosum.gif

nums = [2, 7, 11, 15]
target = 9

result = brute_force_two_sum(nums, target)
if result:
 print("Pair found at indices:", result)
else:
 print("No pair found that adds up to the target.")

01_Arrays

Two Pointers: Inward
Traversal
A pointer is a variable that represents and index or position within a data structure, such as an
Array or Linked List. With Two pointers we can make comparisons, with a pointer at two different
positions, and infer a decision based on that.

When to use:

Data Structure: Linear such as Array, Linked List
Sorted Array or Palindrome
Result asks for Pair of Values
One Result is decided by a Pair of Values

Real-World Example:

Garbage Collection Algorithm

def pair_sum_sorted(nums: List[int], target: int) -> List[int]:
 left, right = 0, len(nums)-1
 while left < right:
 sums = nums[left] + nums[right]
 # if the sum is smaller, increment the left pointer, aiming
 # to increase the sum towards the target value
 if sums < target:

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-inwardtraversal.gif

 left += 1
 # if the sum is larger, decrement the right pointer, aiming
 # to decrease the sum towards the target value
 elif sums > target:
 right -=1
 # If target pair is found return its indices
 else:
 return [left,right]
 return []

01_Arrays

Two Pointers: Unidirectional
Traversal

def shift_zeros_to_the_end(nums: List[int])-> None:
 # The 'left' pointer is used to position non-zero elements.
 left = 0
 # Iterate through the array using a 'right' pointer to locate non-zero
 # elements.
 for right in range(len(nums)):
 if nums[right] != 0:
 nums[left], nums[right] = nums[right], nums[left]
 # Increment 'left' since it now points to a position already occupied
 # by a non-zero element.
 left += 1

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-unidrectionaltraversal.gif

01_Arrays

Two Pointers: Stage
Traversal

Problem: Partition Array by Parity
Description:

Given an integer array nums , rearrange the array in-place such that all even numbers appear
before all odd numbers. The order of the elements within the even or odd group does not matter.

Return the array after rearrangement.

You must solve the problem without using extra space (i.e. in O(1) extra space) and in one pass if
possible.

Example 1:

Input: nums = [3, 8, 5, 12, 7, 4, 6] Output: [8, 12, 4, 6, 3, 5, 7] Explanation: The even numbers [8,
12, 4, 6] appear before the odd numbers [3, 5, 7]. Note that the order within each group does not
matter.
Example 2:

Input: nums = [1, 3, 5, 7] Output: [1, 3, 5, 7] Explanation: Since there are no even
numbers, the array remains unchanged.

Constraints:

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-stagetraversal-partitionbyparity.gif

1 <= nums.length <= 10^5
0 <= nums[i] <= 10^5

1. Initialization:
The script starts with two pointers:

left at the beginning (index 0)
right at the end (last index)

2. Stage Traversal:
In each loop iteration:

It prints the current array and the positions (and values) of the two pointers.
If the number at the left pointer is even, that element is already in the correct half,
so the left pointer is moved right.
If the number at the right pointer is odd, that element is in the correct half, so the
right pointer is moved left.
If neither of those conditions holds (meaning the left number is odd and the right
number is even), the two values are swapped. This moves the even number toward
the left and the odd number toward the right.

3. Termination:
The loop ends when the left pointer is no longer less than the right pointer. At that point,
the array is partitioned with evens on the left and odds on the right.

def partition_by_parity(nums):
 left = 0 # Initialize the left pointer at the beginning.
 right = len(nums) - 1 # Initialize the right pointer at the end.
 print("Initial array:", nums)

 while left < right:
 print("\nCurrent array:", nums)
 print(f"Left pointer at index {left} with value {nums[left]}")
 print(f"Right pointer at index {right} with value {nums[right]}")

 # If the left element is even, it's already in the correct partition.
 if nums[left] % 2 == 0:
 print(f"{nums[left]} is even, so move the left pointer right.")
 left += 1
 # If the right element is odd, it's already in the correct partition.
 elif nums[right] % 2 == 1:
 print(f"{nums[right]} is odd, so move the right pointer left.")
 right -= 1
 # Otherwise, the left element is odd and the right element is even.
 # In that case, swap them.

 else:
 print(f"Swapping {nums[left]} (odd) and {nums[right]} (even).")
 nums[left], nums[right] = nums[right], nums[left]
 left += 1
 right -= 1

 print("\nFinal partitioned array:", nums)

Example usage:
nums = [3, 8, 5, 12, 7, 4, 6]
partition_by_parity(nums)

01_Arrays

Sliding Window: Fixed
A subset of the Two Pointer Method, but uses left and right pointers to define the bounds of a
"window" in iterable data structures like arrays. The window defines the subcomponent, like
subarray or substring, and it slides across the data structure in one direction, searching for a
subcomponent that meets a certain requirement.

When to use:

Data Structure: Linear such as Array, Linked List
Find a Subcomponent of a length

Brute Force:

Finding all possible subcomponents for an answer using a Nested Loop
Outer Loop traverses the array for the first element of the pair
Inner Loop traverses the rest of the array to find second element

Time Complexity is O(n^2) where n is length of the loop (Two Loops)

Real-World Example:

Buffering in Video Streaming

01_Arrays

Sliding Window: Dynamic

01_Arrays

Traversing Array From The
Right

Find Last Occurrence of Target in Array
Description:
Given an integer array nums and an integer target , return the index of the last occurrence of
target in nums . If the target is not found, return -1.

You must solve this problem with an efficient O(n) time solution by traversing the array from right
to left.

Example 1:

Input: nums = [1, 3, 5, 3, 2], target = 3
Output: 3
Explanation: The target 3 appears at indices 1 and 3, but its last occurrence is at index 3.
Example 2:

Input: nums = [1, 2, 3, 4], target = 5
Output: -1
Explanation: The target 5 is not present in the array.
Constraints:

1 <= nums.length <= 10^5
-10^9 <= nums[i] <= 10^9

http://159.223.197.234/uploads/images/gallery/2025-02/right-traversal.gif

-10^9 <= target <= 10^9

Right-to-Left Traversal:
The function iterates over the array starting from the last index down to 0. This
guarantees that the first time the target is found (when traversing from right to left) is its
last occurrence in the array.
Time Complexity:
The traversal takes O(n) time in the worst-case scenario (when the target is at the
beginning of the array or not present), which meets the requirements.

from typing import List

def find_last_occurrence(nums: List[int], target: int) -> int:
 """
 Returns the index of the last occurrence of target in nums.
 If the target is not found, returns -1.
 """
 # Traverse from rightmost index to left
 for i in range(len(nums) - 1, -1, -1):
 if nums[i] == target:
 return i
 return -1

Example usage:
nums = [1, 3, 5, 3, 2]
target = 3
result = find_last_occurrence(nums, target)
print("Last occurrence of", target, "is at index:", result)

01_Arrays

Sorting The Array
When you receive an unsorted array and decide to sort it before applying the two-pointer
technique, the overall time complexity is dominated by the sorting step.

Sorting: This typically takes O(n log n) time.
Two Pointer Traversal: Once sorted, scanning the array with two pointers takes O(n)
time.

Thus, the overall time complexity becomes:
O(n log n) + O(n) = O(n log n)

If the array is already sorted, then you only pay the O(n) cost for the two-pointer traversal, without
the additional O(n log n) sorting cost.

01_Arrays

Index as a Hash Key

String Cheatsheet
A string is a sequence of characters. Many tips that apply to Arrays also apply to Strings.

Time complexity​
A Strings is an array of characters, so the time complexities of basic string operations will closely
resemble that of array operations.

Operation Big-O

Access O(1)

Search O(n)

Insert O(n)

Remove O(n)

Operations involving another String​
Here we assume the other string is of length m.

Operation Big-O

Find substring O(n.m)

Concatenating strings O(n + m)

Slice O(m)

Split (by token) O(n + m)

Strip (remove leading and trailing whitespaces) O(n)

Things to look out for during interviews​
Ask about input character set and case sensitivity.

Corner cases​
Empty string
String with 1 or 2 characters

https://www.techinterviewhandbook.org/algorithms/string/#time-complexity
https://www.techinterviewhandbook.org/algorithms/string/#operations-involving-another-string
https://www.techinterviewhandbook.org/algorithms/string/#things-to-look-out-for-during-interviews
https://www.techinterviewhandbook.org/algorithms/string/#corner-cases

String with repeated characters
Strings with only distinct character

02_Strings

02_Strings

Counting Characters in a
String
String of unique characters​
A neat trick to count the characters in a string of unique characters is to use a 26-bit bitmask to
indicate which lower case latin characters are inside the string.

To determine if two strings have common characters, perform & on the two bitmasks. If the result
is non-zero, ie. mask_a & mask_b > 0 , then the two strings have common characters.

mask = 0
for c in word:
 mask |= (1 << (ord(c) - ord('a')))

https://www.techinterviewhandbook.org/algorithms/string/#string-of-unique-characters

02_Strings

String of Unique Characters
Counting characters​
Often you will need to count the frequency of characters in a string. The most common way of
doing that is by using a hash table/map in your language of choice.

If you need to keep a counter of characters, a common mistake is to say that the space complexity
required for the counter is O(n). The space required for a counter of a string of latin characters is
O(1) not O(n). This is because the upper bound is the range of characters, which is usually a fixed
constant of 26. The input set is just lowercase Latin characters.

https://www.techinterviewhandbook.org/algorithms/string/#counting-characters

02_Strings

Anagram
An anagram is word switch or word play. It is the result of rearranging the letters of a word or
phrase to produce a new word or phrase, while using all the original letters only once.

In interviews, usually we are only bothered with words without spaces in them.

To determine if two strings are anagrams, there are a few approaches:

Sorting both strings should produce the same resulting string.
This takes O(n.log(n)) time and O(log(n)) space.

If we map each character to a prime number and we multiply each mapped number
together, anagrams should have the same multiple (prime factor decomposition).

This takes O(n) time and O(1) space. Examples: Group Anagram
Frequency counting of characters will help to determine if two strings are anagrams.

This also takes O(n) time and O(1) space.

https://leetcode.com/problems/group-anagrams/

02_Strings

Palindrome
Palindrome​
A palindrome is a word, phrase, number, or other sequence of characters which reads the same
backward as forward, such as madam or racecar .

Here are ways to determine if a string is a palindrome:

Reverse the string and it should be equal to itself.
Have two pointers at the start and end of the string. Move the pointers inward till they
meet. At every point in time, the characters at both pointers should match.

The order of characters within the string matters, so hash tables are usually not helpful.

When a question is about counting the number of palindromes, a common trick is to have two
pointers that move outward, away from the middle.

Note that palindromes can be even or odd length. For each middle pivot position, you
need to check it twice - once that includes the character and once without the character.
For substrings, you can terminate early once there is no match

https://www.techinterviewhandbook.org/algorithms/string/#palindrome

