
02_Strings
Counting Characters in a String
Anagram
Palindrome

Counting Characters in a
String

Need to know: Dictionary , for loop

If you need to keep a counter of characters, a common mistake is to say that the space complexity
required for the counter is O(n). The space required for a counter of a string of latin characters is
O(1) not O(n). This is because the upper bound is the range of characters, which is usually a fixed

def count_characters(string):
 counts = {}
 for char in string:
 if char in counts:
 counts[char] = counts[char] + 1
 else:
 counts[char] = 1
 return counts

Example usage:
input_string = "hello world"
result = count_characters(input_string)

print("Character counts:")
for char, count in result.items():
 print(f"'{char}': {count}")

http://159.223.197.234/uploads/images/gallery/2025-03/char-counting.gif

constant of 26. The input set is just lowercase Latin characters.

Anagram
An anagram is word switch or word play. It is the result of rearranging the letters of a word or
phrase to produce a new word or phrase, while using all the original letters only once.

In interviews, usually we are only bothered with words without spaces in them.

Let's break down the three common approaches in very simple terms:

1. Sorting Both Strings
How it works:
Rearrange (sort) the letters of both strings alphabetically. If the sorted versions are
exactly the same, then the strings are anagrams.
Time Cost:
Sorting takes about O(n log n) time, where n is the number of characters.
Space Cost:
It typically uses extra space proportional to the depth of recursion (about O(log n)).
Simple Analogy:
Imagine you have two mixed-up decks of cards. If you sort them by suit and number,
and they end up in the same order, then both decks originally had the same cards.

2. Prime Multiplication Method
How it works:
Assign each letter a unique prime number (like a secret code). For each string,
multiply the primes corresponding to its letters. Thanks to the unique nature of
prime factors, two strings will have the same product if and only if they have the
exact same letters.
Time Cost:
You only go through the string once, so it takes O(n) time.
Space Cost:
It uses constant extra space, O(1), since the mapping of letters to primes is fixed.
Simple Analogy:
Think of it like each letter is a unique ingredient with a special "number." Mix them
all together (multiply), and if two recipes (strings) yield the same "flavor number,"
they contain exactly the same ingredients.

3. Frequency Counting
How it works:
Count how many times each letter appears in each string using a hash (dictionary).
Then, compare these counts. If they match for every letter, the strings are
anagrams.
Time Cost:
This also takes O(n) time, as you just make one pass through each string.

Space Cost:
It uses constant extra space, O(1), because the number of letters (for example, 26
for the English alphabet) is fixed.
Simple Analogy:
Imagine you have two baskets of fruit. If you count the number of apples, oranges,
etc., in both baskets and the counts match exactly, then both baskets have the
same mix of fruits.

Each method has its tradeoffs between speed and space:

Sorting is straightforward but slightly slower due to the sorting process.
Prime multiplication is fast and space-efficient, but it can run into issues with very long
strings because the multiplication might produce huge numbers.
Frequency counting is both fast and efficient, and it's often the simplest and most
reliable method.

Palindrome
Palindrome
Worse approaches

Reversing the String:
You can reverse the string (using slicing like s[::-1] in Python) and then compare it to the
original. This is very concise but uses O(n) additional space.
Recursion:
A recursive approach can check the first and last characters and then recurse on the
substring that excludes them. However, this method uses extra space for the call stack
and is generally less efficient.

Overall, the two-pointer approach is typically considered the best way to solve the palindrome
problem due to its efficiency in both time and space.

​A palindrome is a word, phrase, number, or other sequence of characters which reads the same
backward as forward, such as madam or racecar .

Here are ways to determine if a string is a palindrome:

Reverse the string and it should be equal to itself.
Have two pointers at the start and end of the string. Move the pointers inward till they
meet. At every point in time, the characters at both pointers should match.

The order of characters within the string matters, so hash tables are usually not helpful.

http://159.223.197.234/uploads/images/gallery/2025-03/palindrome-check.gif
https://www.techinterviewhandbook.org/algorithms/string/#palindrome

When a question is about counting the number of palindromes, a common trick is to have two
pointers that move outward, away from the middle.

Note that palindromes can be even or odd length. For each middle pivot position, you
need to check it twice - once that includes the character and once without the character.
For substrings, you can terminate early once there is no match

def is_palindrome(s: str) -> bool:
 left, right = 0, len(s) - 1
 while left < right:
 if s[left] != s[right]:
 return False
 left += 1
 right -= 1
 return True

Example usage:
input_string = "racecar"
if is_palindrome(input_string):
 print(f"'{input_string}' is a palindrome.")
else:
 print(f"'{input_string}' is not a palindrome.")

