01 Arrays

e Brute Force
e Two Pointers: Inward Traversal
e Two Pointers: Unidirectional Traversal

e Two Pointers: Stage Traversal

Sliding Window: Fixed

Sliding Window: Dynamic

Traversing Array From The Right

Sorting The Array

Index as a Hash Key

Brute Force

The brute force approach tries every possible combination to check for a solution, without
leveraging any special properties or optimizations of the data (such as sorted order). Typically
involves:

e Nested loops

o Quter Loop traverses the array for the first element of the pair

o Inner Loop traverses the rest of the array to find second element
e Recursion

Drawbacks:

o Time Complexity: Typically O(n?) or slower, impractical for large datasets.
o Redundancy: Many computations are repeated unnecessarily

(4

Target: 35. Starting brute force search...

def brute_force_two_sum(nums, target):
lterate through each element in the list
for i in range(len(nums)):
For each element, check every other element that comes after it
for jin range(i + 1, len(nums)):
Check if the current pair sums to the target
if numsl[i] + numslj] == target:
return (i, j) # Return the indices as a tuple
If no pair is found that adds up to the target, return None

return None

Example usage:

nums =[2, 7, 11, 15]

http://159.223.197.234/uploads/images/gallery/2025-02/bruteforce-twosum.gif

target = 9

result = brute_force_two_sum(nums, target)
if result:

print("Pair found at indices:", result)
else:

print("No pair found that adds up to the target.")

Two Pointers: Inward
Traversal

A pointer is a variable that represents and index or position within a data structure, such as an
Array or Linked List. With Two pointers we can make comparisons, with a pointer at two different
positions, and infer a decision based on that.

2 0 ()

Target: 6. Start: L at index 0 (1), R at index 4 (6)

When to use:

Data Structure: Linear such as Array, Linked List
Sorted Array or Palindrome

Result asks for Pair of Values

One Result is decided by a Pair of Values

Real-World Example:

e Garbage Collection Algorithm

def pair_sum_sorted(nums: List[int], target: int) -> List[int]:
left, right = 0, len(nums)-1
while left < right:
sums = numslleft] + nums[right]
if the sum is smaller, increment the left pointer, aiming
to increase the sum towards the target value
if sums < target:

left +=1

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-inwardtraversal.gif

if the sum is larger, decrement the right pointer, aiming
to decrease the sum towards the target value
elif sums > target:
right -=1
If target pair is found return its indices
else:
return [left,right]

return []

Two Pointers: Unidirectional
Traversal

() ()

nums[0] = 0; no swap

def shift_zeros_to_the_end(nums: List[int])-> None:
The 'left' pointer is used to position non-zero elements.
left =0
Iterate through the array using a 'right' pointer to locate non-zero
elements.
for right in range(len(nums)):
if nums[right] = 0:
numslleft], nums[right] = nums[right], nums[left]
Increment 'left' since it now points to a position already occupied
by a non-zero element.

left +=1

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-unidrectionaltraversal.gif

Two Pointers: Stage
Traversal

& ® @ @ 6

Start partitioning by parity: even numbers (L) and odd numbers (R)

Problem: Partition Array by Parity

Description:

Given an integer array nums , rearrange the array in-place such that all even numbers appear
before all odd numbers. The order of the elements within the even or odd group does not matter.

Return the array after rearrangement.

You must solve the problem without using extra space (i.e. in O(1) extra space) and in one pass if
possible.

Example 1:
Input: nums =[3, 8, 5, 12, 7, 4, 6] Output: [8, 12, 4, 6, 3, 5, 7] Explanation: The even numbers [8,

12, 4, 6] appear before the odd numbers [3, 5, 7]. Note that the order within each group does not
matter.

Example 2:

Input: nums = [1, 3, 5, 7] Output: [1, 3, 5, 7] Explanation: Since there are no even
numbers, the array remains unchanged.

Constraints:

e 1 <= nums.length <= 1075

http://159.223.197.234/uploads/images/gallery/2025-02/twopointer-stagetraversal-partitionbyparity.gif

e 0 <= nums[i] <= 1075

1. Initialization:
The script starts with two pointers:

e left at the beginning (index 0)

e right at the end (last index)

2. Stage Traversal:
In each loop iteration:

e It prints the current array and the positions (and values) of the two pointers.

e If the number at the left pointer is even, that element is already in the correct half,
so the left pointer is moved right.

e If the number at the right pointer is odd, that element is in the correct half, so the
right pointer is moved left.

e If neither of those conditions holds (meaning the left number is odd and the right
number is even), the two values are swapped. This moves the even number toward
the left and the odd number toward the right.

3. Termination:
The loop ends when the left pointer is no longer less than the right pointer. At that point,
the array is partitioned with evens on the left and odds on the right.

def partition_by parity(nums):
left =0 # Initialize the left pointer at the beginning.
right = len(nums) - 1 # Initialize the right pointer at the end.

print("Initial array:", nums)

while left < right:
print("\nCurrent array:", nums)
print(f"Left pointer at index {left} with value {nums[left]}")
print(f"Right pointer at index {right} with value {nums[right]}")

If the left element is even, it's already in the correct partition.
if nums[left] % 2 == 0:
print(f"{numslleft]} is even, so move the left pointer right.")
left +=1
If the right element is odd, it's already in the correct partition.
elif nums[right] % 2 == 1:
print(f"{nums[right]} is odd, so move the right pointer left.")
right -=1
Otherwise, the left element is odd and the right element is even.

In that case, swap them.

else:
print(f"Swapping {numsl[left]} (odd) and {nums[right]} (even).")
numes[left], nums[right] = nums[right], nums[left]
left +=1

right -=1

print("\nFinal partitioned array:", nums)

Example usage:

nums =[3, 8, 5,12, 7, 4, 6]
partition_by_parity(nums)

Sliding Window: Fixed

A subset of the Two Pointer Method, but uses left and right pointers to define the bounds of a
"window" in iterable data structures like arrays. The window defines the subcomponent, like
subarray or substring, and it slides across the data structure in one direction, searching for a
subcomponent that meets a certain requirement.

When to use:

e Data Structure: Linear such as Array, Linked List
e Find a Subcomponent of a length

Brute Force:

e Finding all possible subcomponents for an answer using a Nested Loop
o Quter Loop traverses the array for the first element of the pair
o Inner Loop traverses the rest of the array to find second element

e Time Complexity is O(n™2) where n is length of the loop (Two Loops)

Real-World Example:

Buffering in Video Streaming

Sliding Window: Dynamic

Traversing Array From The
Right

g

Target: 4. Start right-to-left traversal.

Find Last Occurrence of Target in Array

Description:
Given an integer array nums and an integer target, return the index of the last occurrence of
target in nums . If the target is not found, return -1.

You must solve this problem with an efficient O(n) time solution by traversing the array from right
to left.

Example 1:

Input: nums = [1, 3, 5, 3, 2], target = 3
Output: 3
Explanation: The target 3 appears at indices 1 and 3, but its last occurrence is at index 3.

Example 2:

Input: nums =[1, 2, 3, 4], target =5
Output: -1
Explanation: The target 5 is not present in the array.

Constraints:

e 1 <= nums.length <= 1075
e -1079 <= nums|i] <= 1079
e -10™9 <= target <= 1079

http://159.223.197.234/uploads/images/gallery/2025-02/right-traversal.gif

from typing import List

def find_last_occurrence(nums: List[int], target: int) -> int:
Returns the index of the last occurrence of target in nums.
If the target is not found, returns -1.
Traverse from rightmost index to left
foriin range(len(nums) - 1, -1, -1):
if nums[i] == target:
return i

return -1

Example usage:

nums = [1, 3, 5, 3, 2]

target = 3

result = find_last_occurrence(nums, target)

print("Last occurrence of", target, "is at index:", result)

e Right-to-Left Traversal:
The function iterates over the array starting from the last index down to 0. This
guarantees that the first time the target is found (when traversing from right to left) is its
last occurrence in the array.

o Time Complexity:
The traversal takes O(n) time in the worst-case scenario (when the target is at the
beginning of the array or not present), which meets the requirements.

Sorting The Array

When you receive an unsorted array and decide to sort it before applying the two-pointer
technique, the overall time complexity is dominated by the sorting step.

e Sorting: This typically takes O(n log n) time.
e Two Pointer Traversal: Once sorted, scanning the array with two pointers takes O(n)
time.

Thus, the overall time complexity becomes:
O(n log n) + O(n) = O(n log n)

If the array is already sorted, then you only pay the O(n) cost for the two-pointer traversal, without
the additional O(n log n) sorting cost.

Index as a Hash Key

