
Sorting before Two Pointer
The total time complexity is derived by analyzing each step of the algorithm and summing their
individual complexities. Here's a detailed breakdown:

Steps of the Algorithm
1. Sorting the Array (arr.sort()):

The sort() function sorts the array in ascending order.
Sorting an array of size n takes O(n log n) using efficient sorting algorithms like
Timsort (used in Python).

2. Two-Pointer Traversal (the while loop):
After sorting, the two-pointer technique is applied.
The two pointers (left and right) traverse the array at most once. In each iteration:

Either left is incremented, or right is decremented.
This ensures that the loop runs for at most O(n) iterations.

Combining the Steps
Sorting takes O(n log n).
The two-pointer traversal takes O(n).
Since these steps are performed sequentially (not nested), their complexities are added:
Total Time Complexity=O(nlog⁡n)+O(n)\text{Total Time Complexity} = O(n \log n) + O(n)
Total Time Complexity=O(nlogn)+O(n)

Simplifying the Complexity
In Big O notation, only the dominant term matters as n grows large.

O(n log n) dominates O(n) because logarithmic growth adds a significant factor to
linear growth.

Therefore, the total complexity simplifies to: O(nlog⁡n)O(n \log n)O(nlogn)

Why Approximation?

The symbol ≈ in O(n log n) + O(n) ≈ O(n log n) indicates that:

The O(n) term is negligible compared to O(n log n) for large n .
So the effective time complexity is considered O(n log n).

Practical Example
Let’s assume n = 1,000,000 :

Sorting: nlog⁡n=1,000,000⋅log⁡21,000,000≈20,000,000n \log n = 1,000,000 \cdot \log_2
1,000,000 \approx 20,000,000nlogn=1,000,000⋅log2​1,000,000≈20,000,000 operations.
Traversal: O(n)=1,000,000O(n) = 1,000,000O(n)=1,000,000 operations.
Clearly, the sorting step dominates.

Revision #1
Created 28 December 2024 00:32:20 by victor
Updated 28 December 2024 00:32:39 by victor

