
OOP for Python
Absolutely! Here's a practical set of Python OOP code examples for each item in your �� Object-
Oriented Programming (OOP) checklist — perfect for review or muscle-memory practice.

�� Object-Oriented Programming
(OOP) in Python — With Code
Examples

✅ 1. Create a class with __init__()

✅ 2. Add a method to the class

class Dog:
 def __init__(self, name):
 self.name = name

d = Dog("Fido")
print(d.name) # Fido

class Dog:
 def __init__(self, name):
 self.name = name

 def bark(self):
 return f"{self.name} says woof!"

d = Dog("Rex")

✅ 3. Use @property for a read-only
attribute

✅ 4. Inherit from another class

✅ 5. Override a method

print(d.bark()) # Rex says woof!

class Circle:
 def __init__(self, radius):
 self._radius = radius

 @property
 def area(self):
 return 3.14 * self._radius ** 2

c = Circle(3)
print(c.area) # 28.26
c.area = 50 # ❌ Error: can't set attribute

class Animal:
 def speak(self):
 return "Some sound"

class Dog(Animal):
 def speak(self):
 return "Bark"

d = Dog()
print(d.speak()) # Bark

✅ 6. Use super() to call base class
method

✅ 7. Use __repr__() or __str__()

class Animal:
 def speak(self):
 return "Some sound"

class Cat(Animal):
 def speak(self):
 return "Meow"

c = Cat()
print(c.speak()) # Meow

class Animal:
 def speak(self):
 return "Some sound"

class Dog(Animal):
 def speak(self):
 base = super().speak()
 return base + " + Bark"

d = Dog()
print(d.speak()) # Some sound + Bark

class Dog:
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return f"Dog('{self.name}')"

Absolutely! Here's the full ChatGPT response on polymorphism, polished and formatted so you
can save it, review it, or turn it into a markdown or flashcard:

�� What is Polymorphism in Python?
�� Definition:

�� Real-World Analogy:
You call draw() on a Circle , Square , or Triangle and each one handles it differently.
You don’t care how it draws — you just know the object will handle it correctly.

�� Python Polymorphism Example 1:
Method Overriding
This is classic runtime polymorphism through inheritance:

 def __str__(self):
 return f"My dog's name is {self.name}"

d = Dog("Buddy")
print(repr(d)) # Dog('Buddy')
print(str(d)) # My dog's name is Buddy

Polymorphism means "many forms" — the same function or method behaves
differently depending on the object it’s acting on.“

class Animal:
 def speak(self):
 return "Some sound"

✅ You call the same method (speak()), but each class handles it differently.

�� Python Polymorphism Example 2:
Duck Typing
Python doesn’t require a shared parent class — it just cares if the object has the right method.

✅ As long as the object has a .fly() method, it can be passed in — “if it quacks like a duck...”

class Dog(Animal):
 def speak(self):
 return "Bark"

class Cat(Animal):
 def speak(self):
 return "Meow"

animals = [Dog(), Cat()]

for animal in animals:
 print(animal.speak()) # Bark, Meow

class Bird:
 def fly(self):
 print("Flapping wings")

class Plane:
 def fly(self):
 print("Engines on")

def lift_off(flier):
 flier.fly()

lift_off(Bird()) # Flapping wings
lift_off(Plane()) # Engines on

�� TL;DR:
Concept Meaning

Polymorphism Same method name, different behavior

Method override Subclasses implement their own version

Duck typing Type doesn't matter, behavior does

Benefit Cleaner, extensible, decoupled code

Would you like me to export this explanation as a .md , .txt , or add it to a reference doc for your
interview prep?

Revision #2
Created 5 April 2025 22:30:26 by victor
Updated 5 April 2025 22:46:03 by victor

