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def solve_problem(inputs):
    # Step 1: Understand the Problem
    # - Parse inputs and outputs.
    # - Clarify constraints (e.g., time, space).
    # - Identify edge cases.

    # Step 2: Plan and Design
    # - Think about the brute-force approach.
    # - Optimize: Can you use dynamic programming, divide & conquer, etc.?
    # - Choose the appropriate data structures (e.g., arrays, hashmaps, heaps).
    
    # Step 3: Implement the Solution
    # - Use helper functions for modularity.
    # - Write clear, well-commented code.
    
    def helper_function(args):
        # Optional: For recursion, BFS, DFS, etc.
        pass

    # Main logic
    result = None  # Initialize result or output variable.
    
    # Example logic
    # for num in inputs:
    #    result += num  # Or other computations.

    return result

# Driver code (for testing locally)
if __name__ == "__main__":
    inputs = []  # Replace with example test cases.
    print(solve_problem(inputs))



Sorting before Two Pointer
The total time complexity is derived by analyzing each step of the algorithm and summing their
individual complexities. Here's a detailed breakdown:

Steps of the Algorithm
1. Sorting the Array ( arr.sort() ):

The sort()  function sorts the array in ascending order.
Sorting an array of size n  takes O(n log n) using efficient sorting algorithms like
Timsort (used in Python).

2. Two-Pointer Traversal (the while  loop):
After sorting, the two-pointer technique is applied.
The two pointers ( left  and right ) traverse the array at most once. In each iteration:

Either left  is incremented, or right  is decremented.
This ensures that the loop runs for at most O(n) iterations.

Combining the Steps
Sorting takes O(n log n).
The two-pointer traversal takes O(n).
Since these steps are performed sequentially (not nested), their complexities are added:
Total Time Complexity=O(nlog⁡n)+O(n)\text{Total Time Complexity} = O(n \log n) + O(n)
Total Time Complexity=O(nlogn)+O(n)

Simplifying the Complexity
In Big O notation, only the dominant term matters as n  grows large.

O(n log n) dominates O(n) because logarithmic growth adds a significant factor to
linear growth.

Therefore, the total complexity simplifies to: O(nlog⁡n)O(n \log n)O(nlogn)

Why Approximation?



The symbol ≈  in O(n log n) + O(n) ≈ O(n log n) indicates that:

The O(n) term is negligible compared to O(n log n) for large n .
So the effective time complexity is considered O(n log n).

Practical Example
Let’s assume n = 1,000,000 :

Sorting: nlog⁡n=1,000,000⋅log⁡21,000,000≈20,000,000n \log n = 1,000,000 \cdot \log_2
1,000,000 \approx 20,000,000nlogn=1,000,000⋅log2​1,000,000≈20,000,000 operations.
Traversal: O(n)=1,000,000O(n) = 1,000,000O(n)=1,000,000 operations.
Clearly, the sorting step dominates.



BIG O Breakdown
What is Big O Notation?
Big O notation is a mathematical way to describe the time complexity or space complexity of
an algorithm. It represents the worst-case growth rate of an algorithm as the input size nn
increases, helping us understand how scalable an algorithm is.

Key Characteristics of Big O:
1. Focus on Growth: Big O focuses on how the number of operations grows with the size of

the input (nn).
Example: An algorithm that performs 2n+52n + 5 operations is O(n)O(n) because as
nn grows, the constant 55 and coefficient 22 become negligible.

2. Worst-Case Analysis: It assumes the largest number of operations the algorithm might
perform for the input size nn.

3. Ignore Constants and Lower-Order Terms:
Constants don’t matter in Big O because they don’t scale with nn.
Example: O(2n)=O(n)O(2n) = O(n), O(n+10)=O(n)O(n + 10) = O(n).

4. Only the Dominant Term Counts:
If an algorithm has multiple terms like O(n2+n)O(n^2 + n), the term with the fastest
growth rate dominates. So, O(n2+n)=O(n2)O(n^2 + n) = O(n^2).

Common Big O Complexities
Complexity Name Description

O(1)O(1) Constant Takes the same amount of time
regardless of input size.

O(log⁡n)O(\log n) Logarithmic Reduces the problem size by half at
every step.

O(n)O(n) Linear Time grows directly proportional to
the input size.



Complexity Name Description

O(nlog⁡n)O(n \log n) Linearithmic Common in efficient sorting
algorithms like Merge Sort.

O(n2)O(n^2) Quadratic Common in nested loops, grows
rapidly with input size.

O(2n)O(2^n) Exponential Doubles operations for each
increment in input size.

O(n!)O(n!) Factorial Infeasible for even moderately large
input sizes.

How to Calculate Big O
To calculate Big O, analyze the algorithm step by step, focusing on loops, function calls, and
recursive depth.

1. Loops
A loop that runs nn times is O(n)O(n).
Nested loops multiply their complexities.

Example:

Total = O(n)⋅O(n)=O(n2)O(n) \cdot O(n) = O(n^2).

for i in range(n):        # O(n)
    for j in range(n):    # O(n)
        print(i, j)       # O(1)

2. Sequential Steps
If an algorithm has multiple parts, add their complexities.

Example:

for i in range(n):    # O(n)
    print(i)          # O(1)

for j in range(m):    # O(m)



Total = O(n)+O(m)O(n) + O(m).

    print(j)          # O(1)

If n=mn = m, the total is O(n)+O(n)=O(2n)=O(n)O(n) + O(n) = O(2n) = O(n).

3. Function Calls
If a function is called recursively, analyze how many times it is called and the work done
in each call.

Example (Binary Search):

Binary search splits the array into halves, so its complexity is O(log⁡n)O(\log n).

def binary_search(arr, target, left, right):
    if left > right:
        return -1
    mid = (left + right) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] < target:
        return binary_search(arr, target, mid + 1, right)
    else:
        return binary_search(arr, target, left, mid - 1)

4. Recurrence Relations
Recursive algorithms often have recurrence relations.

Example (Merge Sort):
Merge Sort divides the array into halves and merges them back.
Relation: T(n)=2T(n/2)+O(n)T(n) = 2T(n/2) + O(n) (two recursive calls + merge
operation).
Complexity: O(nlog⁡n)O(n \log n).

Practical Examples
Example 1: Single Loop



Total = O(n)O(n).

Example 2: Nested Loop

Total = O(n)⋅O(n)=O(n2)O(n) \cdot O(n) = O(n^2).

Example 3: Sorting and Traversal

Total = O(nlog⁡n)+O(n)=O(nlog⁡n)O(n \log n) + O(n) = O(n \log n).

Example 4: Binary Search

Complexity: O(log⁡n)O(\log n), because the array size is halved in each recursive call.

Tips for Calculating Big O

for i in range(n):
    print(i)  # O(1)

for i in range(n):
    for j in range(n):
        print(i, j)  # O(1)

arr.sort()  # O(n log n)
for i in arr:
    print(i)  # O(n)

def binary_search(arr, target, left, right):
    if left > right:
        return -1
    mid = (left + right) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] < target:
        return binary_search(arr, target, mid + 1, right)
    else:
        return binary_search(arr, target, left, mid - 1)



1. Focus on Loops: Count how many times each loop runs.
2. Break Down Steps: Analyze each segment of the algorithm separately.
3. Remove Constants: Ignore constants and lower-order terms.
4. Understand Recursive Depth: For recursive algorithms, determine how the input size

shrinks with each call.

With practice, determining Big O becomes intuitive!


