
00_Getting Started
Template
Understanding BIG O Calculations
Loops
OOP for Python
Data Types

Template

https://github.com/mdmzfzl/NeetCode-Solutions

def solve_problem(inputs):
 # Step 1: Understand the Problem
 # - Parse inputs and outputs.
 # - Clarify constraints (e.g., time, space).
 # - Identify edge cases.

 # Step 2: Plan and Design

http://159.223.197.234/uploads/images/gallery/2025-03/coding-interview-steps.jpeg

 # - Think about the brute-force approach.
 # - Optimize: Can you use dynamic programming, divide & conquer, etc.?
 # - Choose the appropriate data structures (e.g., arrays, hashmaps, heaps).

 # Step 3: Implement the Solution
 # - Use helper functions for modularity.
 # - Write clear, well-commented code.

 def helper_function(args):
 # Optional: For recursion, BFS, DFS, etc.
 pass

 # Main logic
 result = None # Initialize result or output variable.

 # Example logic
 # for num in inputs:
 # result += num # Or other computations.

 return result

Driver code (for testing locally)
if __name__ == "__main__":
 inputs = [] # Replace with example test cases.
 print(solve_problem(inputs))

Understanding BIG O
Calculations
Big O notation is a way to describe how the algorithm grow as the input size increases. Two things
it considers:

Runtime
Space

1. Basic Idea
What It Measures:
Big O notation focuses on the worst-case scenario of an algorithm’s performance. It
tells you how the running time (or space) increases as the size of the input grows.

Guarantee of Performance:
Worst-case analysis provides a guarantee that the algorithm won't perform worse
than a certain bound, regardless of the input.
Adversarial Inputs:
In interviews, interviewers often assume inputs that force the algorithm to perform
at its worst, so understanding the worst-case behavior is crucial.
Comparing Algorithms:
Worst-case complexity gives a clear basis for comparing different algorithms,
ensuring that you choose one that performs reliably under all conditions.

Ignoring Constants:
It abstracts away constants and less significant terms. For instance, if an algorithm takes
3n + 5 steps, it’s considered O(n) because, for large n, the constant 5 and multiplier 3
become negligible compared to n.

2. Common Time Complexities

In order of least dominating term O(1) to most dominating term (the one that grows the fastest)

O(1) – Constant Time:
The runtime does not change with the size of the input.

Example: Accessing an element in a list by its index.

O(log n) – Logarithmic Time:
The runtime increases slowly as the input size increases.

Example: Binary search in a sorted list.

O(n) – Linear Time:
The runtime increases linearly with the input size.

Example: Iterating through all elements of an array to find a specific value.

O(n log n):
Often seen in efficient sorting algorithms like mergesort or heapsort.

Example: Sort the list in O(n), then use a Binary search in a sorted list O(logn).

O(n²) – Quadratic Time:
The runtime increases quadratically as the input size increases.

Example: Using two nested loops to compare all pairs in an array.

3. Understanding Through Examples
Constant Time – O(1)

http://159.223.197.234/uploads/images/gallery/2025-03/kDebig-o-graph-annotated.png

Regardless of list size, only one operation is performed.

Linear Time – O(n)

In the find_max function, every element is inspected once, so the time grows linearly with the list
size.

Quadratic Time – O(n²)

Here, for each element, you’re iterating over the entire list, leading to a quadratic number of
comparisons.

4. Why Big O Matters
Performance Insight:
Understanding Big O helps you predict how your solution will scale.

O(n) solution will generally perform better than an O(n²) solution as the input size
increases.

Algorithm Choice:
It allows you to compare different algorithms and select the most efficient one for your
needs.

Discussing Big O can show your understanding of algorithm efficiency.

5. Space Complexity

def get_first_element(lst):
 return lst[0]

def find_max(lst):
 max_val = lst[0]
 for num in lst:
 if num > max_val:
 max_val = num
 return max_val

def print_all_pairs(lst):
 for i in range(len(lst)):
 for j in range(len(lst)):
 print(lst[i], lst[j])

Just as you can analyze time complexity, Big O also helps you understand how much
memory an algorithm requires relative to the input size.

6. Visualizing Growth Rates
Imagine a graph where the x-axis is the input size and the y-axis is the time taken:

O(1) is a flat line.
O(n) is a straight, upward-sloping line.
O(n²) starts off similar for small inputs but grows much faster as n increases.

7. Combining big-o
When you have different parts of an algorithm with their own complexities, combining them
depends on whether they run sequentially or are nested within each other.

1. Sequential Operations
If you perform one operation after the other, you add their complexities. For example, if one part of
your code is O(n) and another is O(n²), then the total time is:

O(n) + O(n²) = O(n²)

This is because, as n grows, the O(n²) term dominates and the lower-order O(n) becomes
negligible.

Here, the overall time complexity is O(n) + O(n²), which simplifies to O(n²).

2. Nested Operations
If one operation is inside another (nested loops), you multiply their complexities. For example, if
you have an outer loop that runs O(n) times and an inner loop that runs O(n) times for each

def sequential_example(nums):
 # First part: O(n)
 for num in nums:
 print(num)

 # Second part: O(n²)
 for i in range(len(nums)):
 for j in range(len(nums)):
 print(nums[i], nums[j])

iteration, then the total time is:

This nested structure gives you O(n²) overall.

3. Combining Different Parts
In real problems, your code might have a mix of sequential and nested parts.

The key idea is:

1. Add the complexities for sequential parts.
2. Multiply the complexities for nested parts.
3. Drop the lower-order terms and constant factors.

When adding complexities, the dominating term (the one that grows the fastest) is the one that
determines the overall Big O notation.

Examples:

def nested_example(nums):
 for i in range(len(nums)): # O(n)
 for j in range(len(nums)): # O(n) for each i
 print(nums[i], nums[j])

def combined_example(arr):
 # Sequential part: Loop that processes each element.
 # This loop runs O(n) times.
 for x in arr:
 print(x) # O(1) operation per element.

 # Nested part: For each element in arr, loop over arr again.
 # The inner loop is nested within the outer loop, giving O(n) * O(n) = O(n²) operations.
 for x in arr:
 for y in arr:
 print(x, y) # O(1) operation per inner loop iteration.

If we call combined_example, the overall complexity is:
O(n) [from the first loop] + O(n²) [from the nested loops].
For large n, O(n²) dominates O(n), so we drop the lower-order term and constant factors,
and the overall time complexity is O(n²).

if __name__ == "__main__":

Binary Search Function:
This function performs a search on a sorted list in O(log n) time.
Sequential Outer Loop:
The search_all function iterates through each query. For each query, it calls binary search.

The outer loop contributes O(n) (assuming there are n queries).
The binary search inside the loop contributes O(log n) per query.

Combined Complexity:
Multiplying the two together gives O(n · log n).
When combined with the rule of dropping lower-order terms and constants, the overall
time complexity is O(n log n).

 sample_list = [1, 2, 3, 4, 5]
 combined_example(sample_list)

Binary search on a sorted list
def binary_search(arr, target):
 low, high = 0, len(arr) - 1
 while low <= high:
 mid = (low + high) // 2
 if arr[mid] == target:
 return mid
 elif arr[mid] < target:
 low = mid + 1
 else:
 high = mid - 1
 return -1

Outer loop processes each query, each using binary search
def search_all(sorted_arr, queries):
 results = []
 for query in queries: # O(n) if queries contains n items
 index = binary_search(sorted_arr, query) # O(log n)
 results.append(index)
 return results

if __name__ == '__main__':
 # Assume this list is already sorted
 sorted_arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 # List of queries (if its size is roughly n, overall complexity is O(n log n))
 queries = [3, 7, 10]
 print("Search results:", search_all(sorted_arr, queries))

This example demonstrates how nested operations (a loop with an inner binary search) yield an
O(n log n) algorithm.

Special Note: If using python sort method, it uses TimSort which worse case is O(n log n)

Loops

�� Standard
Use when you want to loop directly over the items (values only).

Input Example Output

["apple", "banana"] for fruit in ["apple", "banana"]: print(fruit) apple banana

"hi" for char in "hi": print(char) h i

{ "a": 1, "b": 2 } for key in {"a": 1, "b": 2}: print(key) a b

dict.items() for k, v in {"a": 1}.items(): print(k, v) a 1

�� RANGE LOOPS
Use when you need to count, index, or control the steps of iteration.

http://159.223.197.234/uploads/images/gallery/2025-04/loops-to-use.png

Input Example Output

range(3) for i in range(3): print(i) 0 1 2

range(2, 5) for i in range(2, 5): print(i) 2 3 4

range(0, 6, 2) for i in range(0, 6, 2): print(i) 0 2 4

range(3, 0, -1) for i in range(3, 0, -1): print(i) 3 2 1

range(len(list)) for i in range(len(fruits)): print(fruits[i]) values in fruits

�� ENUMERATE LOOPS
Use when you want both index and value from a list or iterable.

Input Example Output

["x", "y"] for i, v in enumerate(["x", "y"]): print(i, v) 0 x 1 y

["a", "b", "c"] for i, letter in enumerate(["a", "b", "c"]): ... 0 a 1 b 2 c

�� NESTED LOOPS
Loop Type Input Example Output

�� Range range(2), range(2) for i in range(2): for j in
range(2): print(i, j)

0 0 , 0 1 , 1 0 , 1 1

�� Range 2D array (matrix) by index for i in range(len(matrix)): for j
in range(len(matrix[0])):

Access each matrix[i][j]

�� Range All pairs in list for i in range(len(nums)): for j
in range(i+1, len(nums)):

Pairs (i, j)

�� Enumerate List of lists (2D grid) for i, row in enumerate(grid):
for j, val in enumerate(row):

(i, j, val) per cell

�� Normal List of lists (values only) for row in matrix: for val in
row: print(val)

Each cell value

�� Normal Two arrays (cross product) for a in ["a", "b"]: for n in ["1",
"2"]: print(a, n)

a 1 , a 2 , b 1 , b 2

1. ✅ Standard for loop
Use when you want to iterate over items in a list, set, or string.

2. ✅ enumerate() loop
Use when you need both the index and the value.

3. ✅ range() loop
Use when you want to:

Loop a specific number of times
Access list items by index
Do nested loops

4. ✅ while loop

colors = ['red', 'green', 'blue']
for color in colors:
 print(color)

for i, color in enumerate(colors):
 print(i, color)

Use when:

You don’t know how many times you’ll loop
You’re waiting for a condition to change

�� Warning: Always make sure the condition will eventually become False or you'll get an infinite
loop!

�� When to Use Which?
Loop Type When to Use

for item in list Clean, readable, item-based loops

enumerate() Index + value

range() Loop by number or index, brute-force logic

while Loop while a condition is true (uncertain end)

Optional Daily Practice Prompts
Want to write one of each daily?

✅ for item in list : print all characters in "hello"
✅ enumerate() : print index and item of a fruit list
✅ range() : print numbers 1 to 10
✅ while : count down from 5 to 0

Want me to add this to your daily fundamentals checklist or export it as a mini Anki flashcard
set or markdown file you can keep open?

x = 0
while x < 5:
 print(x)
 x += 1

OOP for Python
Absolutely! Here's a practical set of Python OOP code examples for each item in your �� Object-
Oriented Programming (OOP) checklist — perfect for review or muscle-memory practice.

�� Object-Oriented Programming
(OOP) in Python — With Code
Examples

✅ 1. Create a class with __init__()

✅ 2. Add a method to the class

class Dog:
 def __init__(self, name):
 self.name = name

d = Dog("Fido")
print(d.name) # Fido

class Dog:
 def __init__(self, name):
 self.name = name

 def bark(self):
 return f"{self.name} says woof!"

d = Dog("Rex")

✅ 3. Use @property for a read-only
attribute

✅ 4. Inherit from another class

✅ 5. Override a method

print(d.bark()) # Rex says woof!

class Circle:
 def __init__(self, radius):
 self._radius = radius

 @property
 def area(self):
 return 3.14 * self._radius ** 2

c = Circle(3)
print(c.area) # 28.26
c.area = 50 # ❌ Error: can't set attribute

class Animal:
 def speak(self):
 return "Some sound"

class Dog(Animal):
 def speak(self):
 return "Bark"

d = Dog()
print(d.speak()) # Bark

✅ 6. Use super() to call base class
method

✅ 7. Use __repr__() or __str__()

class Animal:
 def speak(self):
 return "Some sound"

class Cat(Animal):
 def speak(self):
 return "Meow"

c = Cat()
print(c.speak()) # Meow

class Animal:
 def speak(self):
 return "Some sound"

class Dog(Animal):
 def speak(self):
 base = super().speak()
 return base + " + Bark"

d = Dog()
print(d.speak()) # Some sound + Bark

class Dog:
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return f"Dog('{self.name}')"

Absolutely! Here's the full ChatGPT response on polymorphism, polished and formatted so you
can save it, review it, or turn it into a markdown or flashcard:

�� What is Polymorphism in Python?
�� Definition:

�� Real-World Analogy:
You call draw() on a Circle , Square , or Triangle and each one handles it differently.
You don’t care how it draws — you just know the object will handle it correctly.

�� Python Polymorphism Example 1:
Method Overriding
This is classic runtime polymorphism through inheritance:

 def __str__(self):
 return f"My dog's name is {self.name}"

d = Dog("Buddy")
print(repr(d)) # Dog('Buddy')
print(str(d)) # My dog's name is Buddy

Polymorphism means "many forms" — the same function or method behaves
differently depending on the object it’s acting on.“

class Animal:
 def speak(self):
 return "Some sound"

✅ You call the same method (speak()), but each class handles it differently.

�� Python Polymorphism Example 2:
Duck Typing
Python doesn’t require a shared parent class — it just cares if the object has the right method.

✅ As long as the object has a .fly() method, it can be passed in — “if it quacks like a duck...”

class Dog(Animal):
 def speak(self):
 return "Bark"

class Cat(Animal):
 def speak(self):
 return "Meow"

animals = [Dog(), Cat()]

for animal in animals:
 print(animal.speak()) # Bark, Meow

class Bird:
 def fly(self):
 print("Flapping wings")

class Plane:
 def fly(self):
 print("Engines on")

def lift_off(flier):
 flier.fly()

lift_off(Bird()) # Flapping wings
lift_off(Plane()) # Engines on

�� TL;DR:
Concept Meaning

Polymorphism Same method name, different behavior

Method override Subclasses implement their own version

Duck typing Type doesn't matter, behavior does

Benefit Cleaner, extensible, decoupled code

Would you like me to export this explanation as a .md , .txt , or add it to a reference doc for your
interview prep?

Data Types
Absolutely — knowing your core data types inside and out is essential for LeetCode and coding
interviews. These are the types you’ll see constantly and will use to build efficient solutions.

Here’s a curated list of the must-know data types for LeetCode — including how to use them,
when to choose them, and a one-liner to remember what they’re best at.

�� LeetCode Data Types You Should
Know (Python)

✅ 1. int – Whole numbers
Used for counting, math, binary, etc.

�� Use cases:

Loops, math, binary search, bit manipulation

✅ 2. float – Decimal numbers
Used rarely, but important for precision-sensitive problems.

�� Watch out for rounding errors.

✅ 3. str – Strings

n = 42

pi = 3.14

�� High-frequency on LeetCode

�� Know:

s[::-1] – reverse
s.split() – split by whitespace
s.isalnum() – alphanumeric check
ord(c) , chr(n) – ASCII value

✅ 4. list – Ordered, mutable collection
�� Most used structure in LeetCode

�� Know:

arr.append(x)
arr.pop() , arr.pop(0)
arr[::-1]
arr.sort() vs sorted(arr)
Slicing, binary search, sliding window

✅ 5. tuple – Ordered, immutable collection
Used for keys in sets/dicts or returning multiple values.

�� Know:

x, y = t
Useful as hashable keys: visited[(x, y)] = True

✅ 6. set – Unordered, unique items
�� Great for fast lookup and duplicates

s = "leetcode"

arr = [1, 2, 3]

t = (1, 2)

�� Know:

x in s → O(1)
set(list) removes duplicates
Set operations: union , intersection , difference

✅ 7. dict – Key-value pairs
�� Critical for hash maps / fast lookups

�� Know:

d.get(k, default)
defaultdict(list)
Frequency count: Counter(s)
Keys/values/items iteration

✅ 8. collections.deque – Double-ended
queue
⚡ Fast append and popleft() → great for BFS

✅ 9. heapq / Min Heap (via list)
�� Use for priority queue, top K elements

s = set([1, 2, 3])

d = {"a": 1, "b": 2}

from collections import deque
q = deque([1, 2])
q.append(3)
q.popleft()

�� Python only has min-heaps — invert values for max-heap.

✅ 10. collections.Counter – Fast frequency
counting

�� Useful for:

Anagram check
Majority element
Multiset behavior

�� TL;DR: Memorize These for
LeetCode

Type What it's good for

int Counting, math

float Precision, rarely needed

str Manipulation, parsing, search

list Arrays, stacks, sliding window

tuple Hashable keys, return multiple items

set Uniqueness, fast lookup

dict Key-value, counting, hash maps

deque BFS, queue (O(1) pops)

heapq Priority queue, top K problems

import heapq
h = [5, 3, 8]
heapq.heapify(h)
heapq.heappop(h)

from collections import Counter
c = Counter("aabbcc")

Type What it's good for

Counter Fast frequency counting

Would you like:

Anki cards for this?
Daily drills where you implement key operations from memory?
A printable reference sheet or PDF?

